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1 Introduction

This is an introduction to how R can be used to perform a wide variety of multilevel analyses.
Multilevel analyses are applied to data that have some form of a nested structure. For instance,
individuals may be nested within worlkgips, or repeated measures may be nested within
individuals. Nested structusé dataareoften accompanied by some form of Aadependence.

For instancein work settings, individuals in the same workgroup ottisplaysimilar

performance and providgmilar responses to questions about aspects of the work environment.
Likewise, in repeated measures data, individtygdgally display a high degree of similarity in
responses over timblon-independence may be considered either a nuisance variable or
samething tobe substantively undersod, but the prevalence of nested data requires that analysts
have a variety of tools tdeal withnested data

Thetermmu | t i | e v eldfreqaemthydsgdt® desctibea set of analyses also referred
to asrandomcoefficient moded, random effects, anmulixed-effects model¢see Bryk &
Raudenbush 992 Clark & Linzer, 2014Kreft & De leeuw, 1998Pinheiro & Bates, 2000;
Raudenbush & Bryk, 2008nijders & Bosker, 1999Mixed-effects modelgthe term primarily
usal in this documentjre not without limitations (e.gGlark & Linzer, 2014, but are generally
well-suitedfor dealing with norindependenceNlonetheless, nor to thewidespreadise of
mixed-effects modelsanalysts used variety oftechniquedo examire data with nested
structure. Furthermore, in certain areas such as organizational research;effexetd models
are often augmented bgols designed to quantifyithin-group agreement and greupean
reliability. Therefore, ny goal in writing this documnt is tointroducehow R carcovera wide
range of interrelated topicselated to multilevel analyses including:

Wi-grdup agreement and reliability

 Co n tamdxitedefettsOLS models

e Covariance theorem decomposition
* Random Grmgup Resampl i

e Mi xed Ef foremestedsgrobpaddtae | s

* Variants ofMixed Effects Models foRepeatedVeasure®ata Growth Modeling
Discontinuous Growth Modeling

The wide variety of topiceequirescoveings ever al “packages” written
thesepackages ithe R“stat§  p a cTkea g“es.packdge i$ automatically loaded and
providescomnon statisticsfunctionsto estimate ANOVA(aov ) and regression mode(lsn )
usedin contextual OLSand fixedeffects models

In addition to thestatspackagethe manuscript relielseavily on themultilevel package.
The multilevel package provide&)tools to estimata variety ofwithin-group agreement
and reliabilitymeasuregb) data manipulation functions to facilitate multilevel and longitudinal
analysesand (c) a number of datasets to illustrate concepts.

Finally, the text makes considerable use ofribelinear and linear mixeéffects flme)
model package, (Pinheiro & Bates, 2000henlme packageprovides function$o estimate a
variety ofmixed-effectsmodelsfor both data nested in groups and for repeated measures data
collected over time (growth model$unctionsn nime have remarkable flexibility, allowing
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one to estimate a variety of alternatstatistical modelsThis documenalsoprovides avery

brief description of théme4 package. Théme4 package was developed by Doug Bated
extends one’ s a b-effeatstmgdels io sewwemltimpontant vediysonarexwdidh

are when one’s dependent v &wheradath &e parsallydi c hot om
crossed or fully crossed instead of being fully nested)

This documenbegins with a brief introduction to.RThe material in thintroduction is in
many cases lifted wostbr-wor d from t he documentR”en(tsietd etdh € A
copyright notice on page 2). This brief introduction is intended to give readers a feghfa R
readers familiar with R should feel free to skip this matefallowing the introduction to R
the manuscript focuses on usiRgo conducimultilevel analyses.

2 An Introduction to R

2.1 Overview

R is an integrated suite of software facilities for data manipulation, calculation and graphical
display. Among other things it has

» Effective data handling and storage fait

* A suite of operata for calculations on arrays, in particular matrices
* A large, integrated collection of tools for data analysis

* Graphical facilities for data analysis

» A well-developed and effective programming language

2.1.1 Related software and documentation

R shares rany similarities withthe S language developed at AT&T by Rick Becker, John
Chambers and Allan Wilks. A number of the books and manuals about S bear some relevance to
R.

The basic reference e New S Language: A Programming Environment for Data Asalysi
and Graphicdy Richard A. Becker, John M. Chambers and Allan R. Wilks. The features of the
1991 release of S (S version 3) are coverestatistical Models in 8dited by John M.

Chambers and Trevor J. Hastie. Both of these textsighly usefulfor R users

2.1.2 R and statistics

The developers of R think of it as an environment within which many classical and modern
statistical techniques have been implemented. Some of these are built into the base R
environment, but many are supplied as packagese®rera number of packages supplied with
R (called "standard" packages) and many more are available through the CRAN family of
Internet sites (via http://cranrproject.org).

There is an important difference in philosophy between R and the other mgticatat
systems. In R a statistical analysis is normally done as a series of steps with intermediate results
stored in objects. Thus, whereas SAS and Sit@8dedetailedoutputfiles from ary specific
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analysis, Rorovidesminimal output and stosghe results in a fit object for subsequer#llsby
functions such asummary.

2.1.3 ObtainingR and themultilevel package

The CRAN websites and mirrors (http: //craproject.org) provide binary files for installing
R in Windows(and othercomputing environmentsThe base program and a number of default
packages can be downloaded and installed using a single executable file (*.exe).

The base program is augmented by numerous packages. As of the writing of this manuscript,
thenlme package is included with the badistribution; however, theultilevel package
needs to be obtained using the "packages” GUI option in R. Other programs such as the
foreign  package (for importing SPSS and other types of data) ardttice package (for
graphics) are included as parttbé base distribution.

2.1.4 Data permanency and removing objects

I n R, one works in an area called the wor ks
where objects are created and manipulated. Objects commonly kept in the workspace are (a)
entire datasets (i.e. dataframes) and (b) the output of statistical analyses. It is also relatively
common to keep programs (i.e., functions) that do special praketed tasks within the
workspace.

The R commands
> objects()

or
> 1s()

display the names of the jebts in the workspace. As given above,dbgcts() command

lists the objects in search position 1 corresponding to the workspace (or technically the

“. Gl obal Env”™ ). The open and closed (Iparenthe
It will later become apparent that it is often useful to list objects in other search positions.

Within the workspace, one removes objects usingrthiinction:

> rm(X, Y, ink, temp, foo)

It is important to keep in mind that there &ractionallytwo states tahe objects listed in the
workspace. Thefirsts per manently stored in thad “. Rdat a”
represents a previous save of the workspddee second objestateis anythingcreated during
the current sessionThese latter olgcts reside entirely in memory unless expligyedo the
workspacdl . R d a t. énwther wolkds, if you fail to sawbhe workspace after adding or
modifying objectsyou create in the current session, they will NOT be there next time you start R
andload the specific workspace

There are two ways to save current objects, both of which usatkamage function.
First, one can use the *“Save Workspace” optio
workspace. This option is GUI based, arldvas the user to use a mouse to specify a location.
The other option is to call treave.image function directly from the command line, as in:

> save.image("F:/Temp/Project 1.RData")
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In this case, theave.image function writes the objects in memory teth “ Pr oj ect 1. R
file in the TEMP subdirectory on the F: Drive. If callisgve.image directly, it is advisable
to end the file name with ".RData" so that R recognizes the file as an R workspace.

2.1.5 Running R for Different Projects

As one develops profiency with R)youwill inevitably end upusing Rfor multiple projects.
It will become necessary, therefore, to keep separate workspaces. Each workspace will likely
contain one or more related datasets, model results and programs written for ppgeic
related tasks

For instance, | use R to analyze data files for manuscripts that are being written, revised and
(theoretically) eventually publishe®ften because of the length of the review prodgessay be
several monthdefore returning to apecfic project. Consequently,Have found it helpful to
store the R Workspa@nd analysis scriph the same location as the manuscsipthe data and
statistical models supporting the manuscript are immediately at hand. To save workspaces,
follow these stps:

1. Keep your initial workspace emptyno objects

2. Import the raw data (mormn this later) and perform the analyses.

3. From the File menu, select “Save Workspace
with a name of your choosing (but with an extensf .RData)

4. Usescript files (command linesand savescripts inthe project folder as well.

By keeping separate workspaeesl script filesdataand code aravailable for subsequent
analyses and there will be no need to import the mata than one

2.1.6 Recall and correction of previous commands

Under Windows, R provides a mechanism for recalling arekeguting previous commands.
The vertical arrow keys on the keyboard can be used to scroll forward and backward through a
command history. Once a comnuhis located in this way, the cursor can be moved within the
command using the horizontal arrow keys, and characters can be removed with the DEL key or
added with the other keys.

2.1.7 Getting help with functions and features

R has a built in help facility. Tget more information on any specific named function, for
example solve, the command is

> help(solve)
For a feature specified by special characters, the argument must be enclosed in double or
single quotes, making it a "character string":

> help("[[")

Either form of quote mark may be used to escape the other, as in the string "It's important”.
Our convention is to use double quote marks for preference.
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Searches of help files cae tonducted using thieelp.search  function. For instangeo
find functionsrelated to regression one would type:

> help.search("regression")

2.1.8 R commands, case sensitivity, etc.

Technically R is an expression | anguage with
and “a” are different s wanbbes. s and would refer

Elementary commands consist of either expressions or assignments. If an expression is given
as a command, it is evaluated, printed, and the value is lost. An assignment also evaluates an
expression and passes the value to a variable but tiieisesot automatically printed.

Commands are separated either byasemil on ( ;" ), or by a new I i
can be grouped together into one compound exp
put almost anywhere, starting withaa s hmar k (" #° ), everything to

comment.
If a command is not complete at the end of a line, R will give a different prompt, by default

+

on second and subsequent lines and continue to read input until the command is syntactically
conplete. In providing examples, this document will generally omit the continuation prompt and
indicate continuation by simple indenting.

2.2 Simple manipulations; numbers and vectors

2.2.1 Vectors and assignment

R operates on named data structures. The simplesttsuctuee is the numeric vector, which
is a single entity consisting of an ordered collection of numbers. To set up a vector named x, say,
consisting of five numbers, namely 10.4, 5.6, 3.1, 6.4 and 21.7, use the R command

>x< - c(10.4,5.6,3.1,6.4,21.7 )

This is an assignment statement using the funcifpnwhich in this context can take n
arbitrary number of vector arguments and whose value is a vector gotten by concatenating its
arguments end to end.

A number occurring by itself in an expression letaas a vector of length one. Notice that
the assignmen)t o@pregiastos dfK t hel ¢ sve-' o hami anoutsa n) d
occurring strictly siddby-s i de and it ‘points’ to the object
In current vesions of R, assignments can also be made using the = sign.

> x=c(10.4, 5.6, 3.1, 6.4, 21.7)

Assignments can also be made in the other direction, using the obvious change in the
assignment operator. So the same assignment could be made using

>c(10.4,5.6 ,3.1,6.4,21.7) ->X
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If an expression is used as a complete command, the value is printed and lost. So now if we

were to issue the command

> 1/x

the reciprocals of the five values would be printed astineen(and the value of x, of course,
unchanged)The further assignment

>y< - ¢(x0,Xx)

would create a vector y with 11 entries consisting of two copies of x with a zero in the middle

place.

2.2.2 Missing values

In some cases the components of a vector may not be completely known. When an element or

valuei s “not available”™ or a “missing value”
be reserved for it by assigning it the special value NA. In general, any operation on an NA
becomes an NA. The motivation for this rule is simply that if theifipation of an operation is
incomplete, the result cannot be known and hence is not available.

Many of the functions in R have options for handling missing values such as
na.action=na.omit orna.rm=T (both of which remove or omit the missing values and
run the analyses on the nomnissing data). Detailsn how to handle missing values &andin
the help files associated with specific funcion

Most of the functions in the multilevel package (that we will discuss in detail later) require
data that havao missing values. To create such data,camnake use of thea.exclude
function. The object returned frona.ex clude is a new dataframe that has listwise deletion
of missing values. So

> TDATA<- na.exclude(DATA)

will produce a dataframe TDATA thabntains no missing values. The TDATA dataframe can
then be used subsequent analy$&rsctically speaking, it rarely makes sense to use

na.exclude on an entire dataframe; rather, one typically selects a subset of variables upon

which to applyna.exclud e such asa.exclude(DATA[,c( "varl ", "var2 ")]) . We
discuss dataframesd how to select parts of a dataframenore detail in the next section.

2.3 Dataframes

2.3.1 Introduction to dataframes
A dataframe is an object that stores data. Dataframes have multiptensalepresenting

different variables and multiple rows representing different observations. The columns can be
numeric vectors or nenumeric vectors, however each column must have the same number of

observations. Thus, for all practical purposes onecoarider dataframes to be spreadsheets
with the limitation that each column must have the same number of observations.

Dataframes may be displayed in matrix form, and its rows and columns extracted using matrix

indexing conventions. This means, for exémnghat one can access specific rows and columns

n
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of a dataframe using brackets [rows, columns]. For example to access 3aavalll columns
of a dataframe object namé®AT

> TDAT[1:3)]
To access rows 1:3 and columns 1,5 and 8

> TDATI[1:3,c(1,5,8)]

We will consider matrix bracket manipulations in more detail with a specific example in section
2.5

2.3.2 Making dataframes

Datdrames can bereatedusing thedata.frame  function. The following example makes
a dataframe object calletcountants

> accountants< - data.frame(home=c("MD","CA","TX"),income=c(45000,
55000,60000),car=c("honda","acura","toyota"))

> accountants
home income car

1 MD 45000 honda

2 CA 55000 acura

3 TX 60000 toyota

The$ operator can be used tocass specific components of dataframes. For instance,

accountants$car returns thecar column within the datafram@ccountants . In
practice, one will generally make dataframes from existing files using data importing functions
such asead.table, read.csv  or read.spss . These functions read data sets from

external files and create dataframes. We discuss these types of functions in2séction

2.3.3 Managing the search path

The functionsearch shows the current search path and so is fulusay to keep track of
what has been attached. Initially, it gives the global environment in search position 1 followed
by various packages that are automatically loaded (actual results may vary depending upon the
specific version of R).

> search()
[1] ".GlobalEnv" "package:methods" "package:stats"
[4] "package:graphics" "package:utils" "Autoloads"
[7] "package:base"
where.GlobalEnv is the workspace. Basically, the search path means that if you type in an
object such asar the pogram will look for something namesdr first in the workspace, then
in the packagenethods , then in the packaggats , etc. Becausear does not exist in any
of these places, the following error message will be returned:

> car
Error: Object "car" not fo und

If one attaches the dataframecountants the search path changes as follows:
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> attach(accountants)

> search()

[1] ".GlobalEnv" "accountants"  "package:methods"
[4] "package:stats" "package:graphics" "package:utils"
[7] "Autoloads" "package:base"

In this case, typingar at the command prompt returns:

> car

[1] honda acura toyota

Levels: acura honda toyota

It is often useful to see what objects exist within various components of the search path. The
functionobjects()  with the search position of interest in the parentheses can be used to
examine the contents of any object in the search path. For instance to see the contexts of search
position 2 one types:

> objects(2)
[1] "car" "home" "income"

Finally, we detach #hdataframe and confirm it has been removed from the search path.

> detach("accountants”)

> search()

[1] ".GlobalEnv" "package:methods" "package:stats"

[4] "package:graphics" "package:utils" "Autoloads"

[7] "package:base"

While | haveusedattach() = anddetach() to illustratesearch() , | strongly
recommend that used® notattach dataframes and rely instead onftloperator and thdata
option within most functions. In my experience, it is easy to attach a dataframe, forget and then
inadvertently apply a series of analyses to the wrong dataframe.

2.4 Reading data from files

In R sessions, large data objects will almost always be read from external files and stored as
dataframes.There are several options available to read extereal fil

If variables are stored in spreadsheets such as EXCEL, entire dataframes can be read directly
using the functiomead.table() and variants such asad.csv()  andread.delim()
The help file foread.table() discusses thdetails of thevariants ofre ad.table()

If variables are stored in other statistical packages such as SPSS or SAS, teigihe
package provides usefiuinctionsfor importing the data. This document will illustrate
importing spreadsheet data and SPSS data.
2.4.1 Reading Spreadshe&XCEL) data
External spreadsheets normally have this form.
. The first | ine of the file has a name for
. Each additional l ine of the file has valu
So the first few lines of a spreadsheet data might look as follows.
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UNT PLATOON COHO1 COHO2 COHO03 COH04 COHO05
1044B 1ST 4 5 5 5 5
1044B 1ST 3 NA 5 5 5
1044B 1ST 2 3 3 3 3
1044B 2ND 3 4 3 4 4
1044B 2ND 4 4 3 4 4
1044B 2ND 3 3 2 2 1
1044C 1ST 3 3 3 3 3
1044C 1ST 3 1 4 3 4
1044C 2ND 3 3 3 3 3
1044C 2ND 2 2 2 3 2
1044C 2ND 1 1 1 3 3

One of the most reliable ways to import any type of data into R is to use EXCEL to process
the data file into a comma delimited (*.csv) format. Note that most statistical packages (SAS,
SPSS) can save data as an EXCEL file. Users wa&BSS and export data to EXCEL may
encounter the error type value marker "#NULL!" for missing values. This gamadbe
changed to NA as under the second entry under COHO02 in the example above to avoid problems
in R.
Once the comma delimited fileégsr e at ed using the “Save As” f e:
import it into R using either theead.table() or theread.csv()  function. For instance,
if the file above is saved as \)thefonktersi on. csv”
read.table() can be ged to read the dataframe directly

>cohesion< - read.table("c: \'\ cohesion.csv", header=T RUE sep="")

Alternatively, one can usead.csv()

>cohesion< - read.csv("c: \'\ cohesion.csv")

Note that subdirectories are designated using the double slash insteauyted slash, also
recall that R is case sensitivEinally note the default faread.csv  is header=TRUE so that
option can be omitted.

A final alternative discussed in more detail in secfiagh4is to usdile.choose() to
awoid having to specify the path as in:

>cohesion< - read.csv(file.choose())

Usingfile.choose() opens the graphic user interface (gui) so one can select the file
using a mouse or other device. This option is particularly useful when data are storedl@&xcomp
network file structures.

Typing in the name of theohesion object displays all of the data:

> cohesion
UNIT PLATOON COHO01 COH02 COH03 COH04 COHO05

11044B 1ST 4 5 5 5 5§

2 1044B 1ST 3 NA 5 5 5

3104 4B 1ST 2 3 3 3 3



Multilevel Models in R14

41044B 2ND 3 4 3 4 4
51044B 2ND 4 4 3 4 4
6 1044B 2ND 3 3 2 2 1
7 1044C 1ST 3 3 3 3 3
8 1044C 1ST 3 1 4 3 4
91044C 2ND 3 3 3 3 3
101044C 2ND 2 2 2 3 2
111044C 2ND 1 1 1 3 3

2.4.2 The extremely usefuklipboard " option

In R, users can directly read and write data to adéiivs clipboard to export and import data
into EXCEL and other programs without saving intermediate files.

For instance, to reatbhesion into R directly from EXCEL, one would:

1. Open the cohesion.xls file in EXCEL

2. Select and copy the relevant cell®Vindows(Ctrl-C)

3. Issue the R commaifienportant to issue the command from the console and NOT a script
file. If you issue the command from a script file the command itself goes into the clipboard)

> cohesion< - read.table(file="clipboard",sep=" \'t', header=T)

The file"clipboard" instructsread.table  to read the file from the Windows
clipboard, and the separator optior' dt" indicates thaelements are separated by talys.
general, blank cells in EXCEL are interpreted as missing values; howes@uymns are
imported as factors instead of numeric vectors, it is often because of how missing values are
coded in EXCEL, so you may need to convert missing cells to NA in some cases (or alternatively
convert NA entries into blank cases).

Because theclipboard " option also works wittwrite.table , (see sectio@.4.7) it is
alsoa useful way to export the results of data analyses to EXCEL or other programs. For
instance, if we create a correlation matrix from the cohesitanssd, we can export this
correlation table directly to EXCEL.

> CORMAT< cor(cohesion[,3:7],use="pairwise.complete.obs")
> CORMAT

COHO1 COH02 COH03 COH04 COHO05
COHO01 1.0000000 0.7329843 0.6730782 0.4788431 0.4485426
COHO02 0.7329 843 1.0000000 0.5414305 0.6608190 0.3955316
COHO03 0.6730782 0.5414305 1.0000000 0.7491526 0.7901837
COHO04 0.4788431 0.6608190 0.7491526 1.0000000 0.9036961
COHO05 0.4485426 0.3955316 0.7901837 0.9036961 1.0000000

> write.table(CORMAT file="clipboard",sep=" \ t",col.names=NA)

Going to EXCEL and issuing th&indows"paste" commangor CtrlV) will insertthe
matrix into the EXCEL worksheet. Note the somewhat cotintaitive use of
col.names=NA in this example. This command doest mean omit the column nase
(achievedusingcol.names=F ); instead the command puts an extra blank in the first row of
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the column names to line up the column names with the correct columns. Alternatively, one can
use the optiomow.names=F to omit the row numbers.

In certain caseswritten objects may be too large for the default memory limit of the
Wi ndow’'s <c¢l| i pb o avritesthefull Bhd996 dataset franmtbheeultilevel
packageanto the clipboardvith the intent of writingt to EXCEL, the following error (truncad@
is returned:

> library(multilevel)
> data(b1996) #Bring data from the library to the workspace
> write.table(bh1996,file="clipboard",sep=" \ t",col.names=NA)
Warning message:
In write.table(x, file, nrow(x),... as.integer(quote), :
clipboard buffer i s full and output lost

To increase the size of the clipboard t6MG (or any other arbitrary size), the
"clipboard " optioncan be modified as follows'clipboard -1500". Note that the
options surrounding the use of ttipboard  are specific to variaioperating systems and

may change with different versions of R so it will be worth periodically referring to the help
files.

2.4.3 Theforeign package and SPSS files

Included in current versions of R is tfigeign  package. This package contains functions
toimport SPSS, SAS, Stata and minitab files.

> library(foreign)

> search()

[1] ".GlobalEnv" "package:foreign" "package:multilevel"

[4] "package:methods” "package:stats"  “"package:graphics"

[7] "package:grDevices" "package:utils" "package:datasets”
[10] "Autoloads" "package:base"

> objects(2)

[1] "data.restore” "lookup.xport” "read.dbf*  "read.dta"

[5] "read.epiinfo" "read.mtp”  "read.octave" "read.S"

[9] "read.spss"  "read.ssd" "read.systat" "read.xport”

[13] "write.dbf"  “write.dta" "write.foreign”

For example, if the data in cohesion is stored in an SPSS sav file in a TEMP directory, then
one could issue the following command to read in the data (text followidgrtiagk is a
comment):

> help(read.spss) #look at the documentation on read.spss

> cohesion2< - read.spss(“c: \'\ temp\ \ cohesion.sav")
> cohesion2 #look at the cohesion object
SUNIT
[1]"1044B" "1044B" "1044B" "1044B" "1044B" "1044B" "1044C" "1044 C" "1044C"
[10] "1044C" "1044C"
$PLATOON

[1] "1ST" "1ST" "1ST" "2ND" "2ND" "2ND" "1ST" "1ST" "2ND" "2ND" "2ND"
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$COHO1
[1143234333321
$COHO02

[115NA 344331321
$COHO03
[1155333234321
$COHO4
[115534423333 3
$COHO05
[1155344134323
attr(,"label.table")
attr(,"label.table")$UNIT
NULL
attr(,"label.table")$PLATOON
NULL
attr(,"label.table")$COHO1
NULL
attr(,"label.table")$COHO02
NULL
attr(,"label.table")$COH03
NULL
attr(,"label.table")$COH04
NULL

attr( ,"label.table")$COHO05
NULL

Thecohesion2 object isstored as a list rather thardataframe. With the default options,
read.spss function imports the file as a list and reads information about data labels. In
almost every case, users will want to conttegtlist object into a dataframe for manipulation in
R. This can be done using ttlata.frame  command.

> cohesion2< - data.frame(cohesion2)
> cohesion2

UNIT PLATOON COHO1 COH02 COH03 COH04 COHO05

11044B 1ST 4 5 5 5 5

2 1044B 1ST 3 NA 5 5 5
3 1044B 1ST 2 3 3 3 3

4 1044B 2ND 3 4 3 4 4
51044B 2ND 4 4 3 4 4

6 1044B 2ND 3 3 2 2 1

7 1044C 1ST 3 3 3 3 3
8 1044C 1ST 3 1 4 3 4

9 1044C 2ND 3 3 3 3 3
101044C 2ND 2 2 2 3 2
111044C 2ND 1 1 1 3 3

Alternatively, users can change the default ogtioimead.spss  to read the data directly
into a dataframe. Note the useusk.value.labels=F andto.data.frame=T below:

> cohesion2< - read.spss("c: \'\ temp\ \ cohesion.sav",
use.value.labels=F, to.data.frame=T)
> cohesion2

UNIT PLATOON COHO01 COH02 COH03 COH04 COHO05
11044B 1ST 4 5 5 5 5
21044B 1ST 3 NA 5 5 5
31044B 1ST 2 3 3 3 3
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41044B 2ND 3 4 3 4 4

51044B 2ND 4 4 3 4 4

6 1044B 2ND 3 3 2 2 1

7 1044C 1ST 3 3 3 3 3

8 1044C 1ST 3 1 4 3 4

91044C 2ND 3 3 3 3 3

101044C 2ND 2 2 2 3 2

111044C 2ND 1 1 1 3 3

Thecohesion dataframe (made using the EXCEL and csv files)@iwesion2
(imported from SPSS) are now identical.

2.4.4 Usingfile .choose to bring up a GUI to read data

One limitation with using command lines to specify where files are locattbat in complex
directory structures it can be hard to specify the correct location of the data. For instance, if data
are embedded several layers deep in subdireciaraesetwork driveit may be difficult to
specify the path. In these cases,ftile .choose function isa useful way to identify the file
Thefile .choo se function opens a Graphical User Interface (GUI) dialogue box allowing one
to select files using the mouse. Tdiwose.files function can be embedded within any
function where oneds to specifically identify a file. So, for instance, one can use
file.choose with read.spss

> cohesion2< -read.spss( file .choo se(),use.value.labels=F, to.data.frame=T)

Notice how file .choose () "replaces'c: \\temp\\ cohesion.sav" used in the
final examplan section2.4.3 With the use of ile .choo se a GUI dialogue box opens
allowing one tcselect a specific SPSS sav file.

2.4.5 Checking your dataframes wisltr , summary, andhead

With small data sets it is easy to verify that théachas been read in correctly. Often,
however, one will be working with large data sets that#fieult to visual verify.
Consequently, functions suchsts (structure)summary andhead provide easy ways to
examine dataframes.

> str(cohesion)
“dat a.frame". 11 obs. of 7 variables:
$ UNIT : Factor w/ 2 levels "1044B","1044C":1111112222...
$ PLATOON: Factor w/ 2 levels "1ST","2ND":1112221122...
$COHO1 :int 4323433332...
$COHO2 :int 5NA34433132.
$COHO3 :int 5533323432...
$COHO4 :int 5534423333..
$COHO5 :int 5534413432...

> summary(cohesion)
UNIT PLATOON COHO1 COHO02 COHO03
1044B:6 1ST:5 Min. :1.000 Min. : 1.00 Min. :1.000
1044C:5 2ND:6 1st Qu.:2.500 1stQu.:2.25 1st Qu.:2.500
Median :3.000 Median :3.00 Median :3.000
Mean :2.818 Mean :2.90 Mean :3.091
3rd Qu.:3.000 3rd Qu.:3.75 3rd Qu.:3.500
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Max. :4.000 Max. :5.00 Max. :5.000
NA's :1.00
COHO04 COHO05
Min. :2.000 Min. :1.000
1st Qu.:3.000 1st Qu.:3. 000
Median :3.000 Median :3.000
Mean :3.455 Mean :3.364
3rd Qu.:4.000 3rd Qu.:4.000
Max. :5.000 Max. :5.000

> head(cohesion) #list the first six rows of data in a dataframe
UNIT PLATOON COHO01 COH02 COH03 COH04 COHO05

11044B 1sT 4 5 5 5 5

21044B 1ST 3 NA 5 5 5

31044B 1ST 2 3 3 3 3

41044B 2ND 3 4 3 4 4

51044B 2ND 4 4 3 4 4

61044B 2ND 3 3 2 2 1

2.4.6 Loading data from packages

One of the useful attributes of R is that the data used in the examples are almost always
available to the user. These data are associated with specific packages. For instance, the
multilevel package uses a ety of data files to illustrate specific functions. To gain access to
these data, one uses theta command:

>data(package="multilevel")

This commandists the data sets associated with the multilevel packagehamdmmand
>data(bh 1996, package="mult ilevel)

copies thdbh1996 data set to the workspace making it possible to work withhin2000
dataframe.

If a package has been attached by library, its datasets are automatically included in the search,
so that

>library(multilevel)
attaches the multilel package;
>data()

lists all of available data sets in the multilevel package and in other packages, and
>data(bh 1996)

copies the data from the package to the workspatb@ut requiring explicit specification of the
package
2.4.7 Exporting data to spreadséts usingvrite()  andwrite.table()

As noted previouslyhere are likely to be occasions when it is useful to export data from R to
spreadsheets. There are two functions that are useful for exporting tthatarite  function
and thewrite.table function. Thewrite function is useful when one wants to export a
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vector while thewrite.table function is useful for exporting dataframes or matrices. Below
both will be illustrated.

Let us assume that we were interested in calculating the average hourd feotke 99
companies in thbh1996 data set, and then exporting these 99 group means to a spreadsheet.
To calculate the vector of 99 group means and write them out to a file we can issue the following
commands:

> HRSMEANS<tapply(bh1996$HRS,bh1996$GRP,m  ean)
> write(HRSMEANS file="c: \'\ temp\ \ ghours.txt",ncolumns=1)

Thetapply command subdivides HRS by GRP, and then performs the fumsgan on
the HRS data for each group. This command is similar taggeegate function that will be
discussed in moreethil in sectiorB8.2.2 Thewrite function takes the 99 group means stored
in the objecHRSMEANSnNd writes them to a file in the \\emp" subdirectory called
ghours.txt. It is important to use theolumns=1 option or else thwrite function will
default to five columns. The ghours.txt file can be read into any spreadsheet as a vector of 99
values.

Thewrite.table function is similar to thevrite  function, except that one must specify
the character value that will be usedgparateolumns. Common choices include tabs
(designated ast ) and commas. Of these two common choices, commas are likely to be most
useful in exporting dataframes or matrices to spreadsheets because programs like Microsoft
EXCEL automatically read inomma delimited or csv files. Below | export the erbind 996
dataframe to a comma delimited file that can be read directly into Microsoft EXCEL.

> write.table(bh1996,file="c: \'\ temp\ \ bhdat.csv",sep=",",row.names=F)

Notice the use of theep="," option aml also theow.names=F option. The
row.names=F stops the program from writing an additional column of row names typically
stored as a vector from 1 to the number of rows. Omitting this column is important because it
ensures that the column names maiehvith the correct columns. Recall from secti#.2that
one can use thdife=clipboard " option to directly write to Window's clipboard.

2.5 More on using matrix brackets on dataframes

At this point, it may be useful to recodsr the utility of using matrix brackets to access
various parts ofohesion (see also sectio23.1). While this may initially appear
cumbersome, mastering the use of matrix brackets provides considerable control over ones'
datafame.

Recall that one accesses various parts of the dataframe via [rows, columns]. So, for instance,
we can access rows 1,5,and 8 and columns 3 and 4 aéliesion dataframe as follows:

> cohesion[c(1,5,8),3:4]
COHO01 COHO02

1 4 5
5 4 4
8 3 1

Alternatively, we can specify the column names (this helps avoid picking the wrong calumns)
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> cohesion[c(1,5,8),c("COHO1","COH02")]
COHO1 COHO2

1 4 5
5 4 4
8 3 1

It is often useful to pick specific rows that meetne criteria. So, for example, we might want
to pick rows that are from the 1ST PLATOON

> cohesion[cohesion$PLATOON=="1ST",]
UNIT PLATOON COHO01 COH02 COH03 COH04 COHO05

11044B 1ST 4 5 5 5 5
21044B 1ST 3 NA 5 5 5
31044B 1ST 2 3 3 3 3
71044C 1ST 3 3 3 3 3
81044C 1ST 3 1 4 3 4

Upon inspection, we might want to further refine our choice and exclude missing values. We do
this by addng another condition usirgNDoperator'&"

> cohesion[cohesion$PLATOON=="1ST"&is.na(cohesion$COHO02)==F ]
UNIT PLATOON COHO01 COH02 COH03 COH04 COHO05

11044B 1ST 4 5 5 5 b

31044B 1ST 2 3 3 3 3

7 1044C 1sT 3 3 3 3 3

81044C 1ST 3 1 4 3 4

Using matrix brackets, one can easily and quickly specify particular portions of a dataframe that
are of interest.

2.6 Identifying Statistical models in R

This section presumeseaheader has some familiarity with statistical methodology, in
particular with regression analysis and the analysis of variance. Almost all statistical models
from ANOVA to regression tmixed-effectsmodels are specified in a common format. The
format s DV ~ IV1+IV2+IV3. In a regression model this dictates that the dependent variable
(DV) will be regressed on three independent variables. By using + between the 1V's, the model
is requesting only main effects. If the IVs were separated by the * sigayid designate both
main effects and interactions (all two and thwesy interactions in this case).

2.6.1 Examples

A few examples may be useful in illustrating some other aspects of model specification.
Supposs/, X, X0, x1 and x2 are numeric variables, d\, B, and Care factors or
categorical variables. The following formulae on the left side below specify statistical models as
described on the right.

y~X

y~1+x Both imply the same simple linear regression model of y on x. The first has antimplic
intercept term, and the second an explicit one.

y~A Single classification analysis of variance model of y, with classes determined by A.

Basically a onavay analysis of variance.
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y~A+X Single classification analysis of covariance model ofijh wlasses determined by A,
and with covariate x. Basically an analysis of covariance.

2.6.2 Linear models

The basic function for fitting ordinary multiple regression models\{$ , and a streamlined
version of the call is as follows:

> fitted.model < - Im(for mula, data = data.frame)
For example
>fm2 < - Im(y ~ x1 + x2, data = production)

would fit a multiple modetegressing on x1 and x2 (with implicit intercept term). The
important optim data = production specifieswhere the variables are to be found.

2.6.3 Gereric functions for extracting model information

The object created Hyn() is a fitted model object; technically a list of results of class "Im".
Information about the fitted model can then be displayed, extracted, plotted and so on by using
generic funcons that orient themselves to objects of class "Im". These include:

addl coef effects kappa predict residuals
alias deviance family labels print step

anova dropl formula plot proj summary

A brief description of the most commgnised ones is given below.

coefficients(object)
Extract the regression coefficients.
Short form:coef(object)

plot(object)
Produce four plots, showing residuals, fitted values and some diagnostics.

predict(object, newdata=data.frame)
The dataframe sygied must have variables specified with the same labels as
the original. The value is a vector or matrix of predicted values corresponding
to the determining variable values in data.frame.

print(object)
Print a concise version of the object. Most oftsadiimplicitly.

residuals(object)
Extract the (matrix of) residuals, weighted as appropriate.
Short form: resid(object).

summary(object)
Print a comprehensive summary of the results of the regression analysis. The summary
function is widely used to extct more information from objects whether the objects
are dataframes or products of statistical functions.
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2.7 Graphical procedures

Graphical facilities are an important and extremely versatile component of the R environment.
It is possible to use the facik to display a wide variety of statistical graphs and also to build
entirely new types of graphs. The graphics facilities can be used in both interactive and batch
modes, but in most cases, interactive use is more productive. Interactive use is disc@asy
at startup time R initiates a graphics device driver that opens a special graphics window for the
display of interactive graphics. Although this is done automatically, it is useful to know that the
command used windows() under Windows. Once ttaevice driver is running, R plotting
commands can be used to produce a variety of graphical displays and to create entirely new
kinds of display.

2.7.1 Theplot() function

One of the most frequently used plotting functions in R igpth)  function. This is a
generic function: the type of plot produced is dependent on the type or class of the first
argument.

plot(x, y) If x and y are vectors, plot(x, y) produces a scatterplot of y against x.

plot(df)

plot(~ a+b+c, data=df)

plot(y ~ a+b+c, data=df)
where dfis a dataframe. The first example produces scatter plots of all of the
variables in a dataframe. The second produces scatter plots for just the three named
variables (a, b and c). The third example plots y against a, b and c.

2.7.2 Displaying multivariate data

R provides two very useful functions for representing multivariate data. If X is a numeric
matrix or dataframe, the command

> pairs(X)

produces a pairwise scatterplot matrix of the variables defined by the columns of X, that is, every
column of X is ploted against every other column of X and the resulting ajrplots are
arranged in a matrix with plot scales constant over the rows and columns of the matrix.

When three or four variables are involved a coplot may be more enlightening. If a and b are
numeic vectors and c is a numeric vector or factor object (all of the same length), then

> coplot(a~b|c)

produces a number of scatterplots of a against b for given values of c. If ¢ is a factor, this simply
means that a is plotted against b for everglle¥ c. When c is numeric, it is divided into a

number of conditioning intervals and for each interval a is plotted against b for values of ¢ within
the interval. The number and position of intervals can be controlledywigh.values=

argument tacoplot () -- the functionco.intervals() is useful for selecting intervals.

You can also use two given variables with a command like

> coplot(a~b|c+d)
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which produces scatterplots of a against b for every joint conditioning interval of c and d. The
coplot() andpairs()  function both take an argumguainel= which can be used to
customize the type of plot which appears in each panel. The defpaibis()  to produce a
scatterplot but by supplying some other {@wvel graphics function of two vectors x andsytae
value ofpanel= you can produce any type of plot you wish. An example panel function useful
for coplots ispanel.smooth()

2.7.3 Advanced Graphics and thedtice package

An advanced graphics package calkgtice is included with the base program. The
| attice  package is an implementation of trellis graphics designed specificallytf@tR

provides presentation quality graphid3elow is an example involving creating a histogram of
1000 random numbers.

> library(lattice)

> histogram(rnorm(1000),nint=3 0,xlab="1000 Random Numbers",
col="sky blue")

Percent of Total

I I I
2 0 2

1000 Random Numbers

Another exampléaken from Bliese and Halverson (2002) provides an even better
demonstration of the graphics capabilities of R anddttiee package. This example
illustrates a tweway interaction on éhtee dimensional surface.

> library(multilevel)
> data(lg2002)

> TDAT<- 1g2002[!duplicated(lq2002$COMPID),]
> tmod< - IM(GHOSTILE~GLEAD*GTSIG,data=TDAT)

> TTM<- seq(min(TDAT$GLEAD),max(TDAT$GLEAD),length=25)

> TTV< - seq(min(TDAT$GTSIG),max(TDAT$GTSIG),length=2 5)
> TDAT2< - list(GLEAD=TTM,GTSIG=TTV)

> grid< - expand.grid(TDAT2)

> fit< - predict(tmod,grid)
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> wireframe(fit~GLEAD*GTSIG, data=grid,col="steelblue4",

screen = list(z = -30,x= -60),
xlab=list("Leadership \ n Climate",
cex=1.5),ylab=list(" Task \n Significance",cex=1.5),

zlab=list("Hostility ",cex=1.5),scales=list(arrows=F),
shade=T,colorkey=F) #or use drape=T instead of shade=T

Leadershzif:: 24
Climate

x zzsignificance

P

3 Multilevel Analyses

The remainder of this documehtistrates how Rcan be usedh multilevel modeling

beginningwith several R functions particularly usefal preparing data for subsequent anedys
Following data preparation, the manuscript covers:

Wi -group agreement and reliability
Cont ext tefhetts GLA moddlsi x e d
Covariance tétneorem decompositi

Mi xed Effects Models for nested group

* Variants of Mixed Effects Models for Repeated Measures Data (Growth Modeling,
Discontinuous Growth Modeling)

dat a
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Thediscusgn of within-group agreement and the covariance theorem decomposition also
includes sections on Random Group Resampling (or RGR). RGR is a resampling technique that
is useful in contrasting actual group results to psegrdap results (see Bliese & Halverson,

2002; Bliese, Halverson & Rothberg, 2000).

3.1 Attaching the multilevel and nlme packages
Many of the features in the following sections assume thatihélevel andnime
packages are accessible inRecall thaimultilevel package is not distributed with the base

installation and needs to be retrieved using the "packages" GUI aptiinAlso recall that
once retrieved, thegekag is attached in R using the library command:

> library(multilevel)

By default, thenlme andMASSphackags are loaded when thaultilevel package is
loaded as several of the functions in theltilevel package depend onime andMASS

3.2 Multilevel data manipulation functions

3.2.1 Themerge Function

One of the key data manipulation tasks that must be accomplished prior to estimating several
of the multilevel models (specifically contextual models anixked-effectsmodels) is that group
|l evel wvariables must be “assigned down” to th
individual and grougevel variables, one typically begins with two separate dataframes. One
dataframe contains individubdvel data, ad the other dataframe contains grdenel data. By
combining these two dataframes using a group identifying variable common to both, one is able
to create a single data set containing both individual and group data. In R, combining dataframes
is accompished using thenerge function.

For instance, consider tltehesion data introduced when shawg how to read data from
external files. Theohesion data is included as a multilevel data set, so we cathaeskata
function to bring it from the multilesl package to the working environmevithout having to
useread.csv  orread.table (see sectio2.4.]).

> data(package="multilevel")

Data sets in package o6multilevel 6:
bh1996 Data from Bliese and Halverson (199 6)
bhr2000 Data from Bliese, Halverson and Rothberg (2000)
chen2005 Data from Chen (2005)
cohesion Five cohesion ratings from 11 individuals

nested in 4 platoons in 2 larger units
klein2 000 Data from Klein, Bliese, Kozlowski et al.,

(2000)
1g2002 Data used in special issue of Leadership

Quarterly, Vol. 13, 2002
sherifdat Sherif (1935) group data f rom 3 person teams
tankdat Tank data from Bliese and Lang (in press)

univbct Data from Bliese and Ployhart (2002)
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>data(cohesion)

>cohesion
UNIT PLATOON COHO01 COH02 COH03 COH04 COHO05
1 1044B 1ST 4 5 5 5 5
2 1044B 1ST 3 NA 5 5 b5
31044B 1ST 2 3 3 3 3
4 1044B 2ND 3 4 3 4 4
51044B 2ND 4 4 3 4 4
6 1044B 2ND 3 3 2 2 1
7 1044C 1sT 3 3 3 3 3
8 1044C 1ST 3 1 4 3 4
9 1044C 2ND 3 3 3 3 3
101044C 2ND 2 2 2 3 2
111044C 2ND 1 1 1 3 3

Now assume that we have anatbataframe with platoon sizes. We can create this dataframe
as follows:

> group.size< - data.frame(UNIT=c("1044B","1044B","1044C","1044C"),
PLATOON=c("1ST","2ND","1ST","2ND"),PSIZE=c(3,3,2,3))
> group.size #look at the group.size dataframe
UNIT PLATOON PSIZE
11044B 1ST 3
21044B 2ND 3
31044C 1ST 2
41044C 2ND 3

To create a single filsmmew.cohesion ) that contains both individual and platoon
information, use thenerge command.

> new.cohesion< - merge(cohesion,group.size, by=c("UNIT","PLATOON"))
> new.cohesion

UNIT PLATOON COHO1 COH02 COH03 COH04 COHO05 PSIZE

11044B 1ST 4 5 5 &5 5 3
21044B 1ST 3 NA 5 5 5 3
31044B 1ST 2 3 3 3 3 3
41 044B 2ND 3 4 3 4 4 3
51044B 2ND 4 4 3 4 4 3
6 1044B 2ND 3 3 2 2 1 3
7 1044C 1ST 3 3 3 3 3 2
8 1044C 1ST 3 1 4 3 4 2
91044C 2ND 3 3 3 3 3 3
101044C 2ND 2 2 2 3 2 3
111044C 2ND 1 1 1 3 3 3

Notice that every individual now has a value R8IZE —a value that reflects the number of
individuals in the platoon.

In situations where there issangleunique group identifier, thiey option can be simplified to
include just one variableFor instance, if the grotipvel data had reflected values for each
UNIT instead of PLATOON nested umit, the by option would simply reday="UNIT" . In
the case of PLATOON, however, there are numerous platoons with the same name (1ST, 2ND),
S0 unique platoons need to be identified within the nesting of the larger UNIT.
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3.2.2 Theaggregate function

In many @ases in multilevel analyses, one will be interested in creating a-tgoeipvariable
from individual responses. For example, one might be interested in calculating the group mean
and reassigning it back to the individual. In these caseagtiregate function in
combination with thenerge function ishighly useful. In our cohesion example, for instance,
we want toassignplatoon means fahevariables COHO1 and COHO2 back to the individuals.

The first step in this process is to create a gileuplfile usingtheaggregate function.
Theaggregate function has three key arguments. The first argument is a vector or matrix of
variables that one wants to convert to gréenel variables. Second is the grouping variable(s)
included as a list, and third the function hean, var , length , etc.) executed on the

variables. To calculate the means of COHO1 and COHO02 (columns 3 and 4 of the cohesion
dataframe) issue the command:

> TEMP< aggregate(cohesion[,3:4],list(cohesion$UNIT,cohesion$PLATOON),mean)
TEMP

Group.1 Group.2 COHO1 COHO02

1044B  1ST 3.000000 NA

1044C  1ST 3.000000 2.000000

1044B  2ND 3.333333 3.666667

1044C  2ND 2.000000 2.000000

Notice that COHO2 has ThaNA‘'valuad dccurbachusesthefewas t h e
a missing value in the individuddvel file. If we decide to base the group mean on the non
missingindividual valuesfrom group memberae can add the parametea.rm=T , to
designate that NA values should be removed prior to calcglétengroup mean.

\

A WN P

> TEMP<- aggregate(cohesion[,3:4],list(cohesion$UNIT,cohesion$PLATOON),
mean,na.rm=T)

> TEMP

Group.1 Group.2 COHO01 COHO02

1044B  1ST 3.000000 4.000000

1044C 1ST 3.000000 2.000000

1044B  2ND 3.333333 3.66666 7

1044C  2ND 2.000000 2.000000

A WNBE

To merge thd EMPdataframe with theew.cohesion dataframe, weanchange the
names of the group identifiers in thEMPframe to match the group identifiers in the
new.cohesion dataframe. We also want to change thmas of COHO1 and COHO02 to
reflect the fact that tG.elygdesignate ggupanagn. me an s .

> names(TEMP)< - ¢c("UNIT","PLATOON","G.COHO01","G.COH02")

Finally, we merge TEMP up withew.cohesion to get the complete data set.

> final.cohe sion< - merge(new.cohesion,TEMP,by=c("UNIT","PLATOON"))
> final.cohesion

UNIT PLATOON COHO0O1 COH02 COH03 COH04 COHO05 PSIZE G.COH01 G.COHO02
11044B 1ST 4 5 5 5 5 33.000000 4.000000
2 1044B 1ST 3 NA 5 5 5 33.000000 4.000000
31044B 1ST 2 3 3 3 3 33.000000 4.000000
4 1044B 2ND 3 4 3 4 4 33.3333333.666667
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51044B 2ND 4 4 3 4 4 33.3333333.666667

6 1044B 2N D 3 3 2 2 1 33.3333333.666667

7 1044C 1ST 3 3 3 3 3 23.000000 2.000000

8 1044C 1ST 3 1 4 3 4 23.000000 2.000000

91044C 2ND 3 3 3 3 3 32.000 000 2.000000
101044C 2ND 2 2 2 3 2 32.000000 2.000000

111044C 2ND 1 1 1 3 3 32.000000 2.000000

Theaggregate andmerge functionsprovidetools necessary to manipulate data and
prepare it for subsgient multilevel analyses (excluding growth modeling consdlieter).
Again, nde thd this illustration usea relatively complex situation where there are two levels of
nesting (Platoomvithin Unit). In cases where there is only one grouping varidbteexample,
UNIT) the commands faggregate andmerge contain the name of a single grouping
variable. For instance,

>TEMP< aggregate(cohesion[,3:4],list(cohesion$UNIT),mean,na.rm=T)

3.3 Within-Group Agreement and Reliability

The data used in this sectiare taken from Bliese, Halverson & Rothberg (2000). The
examples are based upon bie2000 data set from the multilevel package. Thus, the first step
is tomake thebhr2000 data set available for analysis and examine the properties of the
dataframe

> help(bhr2000)
> data(bhr2000)# imports the datain tothe  working environment
> names(bhr2000)
[1] "GRP" "AF06" "AFQ7" "AP12" "AP17" "AP33" "AP34"
"AS14" "AS15""AS16" "AS17" "AS28" "HRS" "RELIG"
> nrow(bhr2000)
[1] 5400
Thenames functionidentifies14 variables. The first on&RR is the group identifier. The
variables in columns 2 through 12 are individual responses on 11 items that make up a leadership
scaleeHRSr e present s i ndivi dualRELIG repesemtsindigiuaf swor k
reports of the degree to which religion is a useful coping mechanismrrdlwvecommand
indicates that there are 5400 observations. To find out how many groups there are we can use

thelength command in conjunction with thenique command

>length( unique(bhr2000$GRP))

[1] 99

There are several functions in the multilevel library that are usefabfoulatingand
interpreting agreement indices. These functionsvage rwg.j , rwg.sim ,rwg.j.sim
rwg.j.lindell ,awg, ad.m, ad.m.sim andrgr.agree . Therwg functioncalculates
the James, Demaree & Wolf (1984 for single item measures; the@g.j functioncalculates
the James et al. (1984)4) for multi-item scales Therwg.j.lindell functioncalculates
*wgq (Lindell, & Brandt, 1997; 1999)Theawg functioncalculateshe a,g agreement index
proposedy Brown and Hauenstein (2005Thead.m functioncalculatesaverage deviation
(AD) values for the mean or median (Burke, Finkelstein & Dusig, 1999). A series of functions
wi tsim”“ i n & ({wg.siim armg.j.sim  andad.m.sim ) allow one to simulate
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agreement values from a random uniform distribution to testétistical significance
agreement.The simulation functions are based on worlDunlap, Burke and SmitErowe

(2003) Cohen, Doveland Eich (2001&andCohen, Doveh and NuhaBhani 009. Finally,
thergr.agree  function performs a Random Group Resampling (RGR) agreement test (see
Bliese, et al., 2000).

In addition to the agreement measures, there are two multilevel reliability meiS@l
andICC2 than can be used on ANOVA models. As Bliese (2000) and others (e.g., Kozlowski
& Hattrup, 1992; Tinsley & Weiss, 1975) have noted, reliability measures such as the ICC(1)
and ICC(2) are fundamentally different from agreement measunesthedess, they often
provide complementary information to agreement measures, so this sicsinates the use of
each of these functionsingthe dataframé&hr2000 .

3.3.1 Agreement: g, fwgg), and rgg)

Both therwg andrwg.j functions are based uptime formulations described in James et al.
(1984). Both functions require the user to specify three pieces of information. The first piece of
information is the variable of interest)( the second is the grouping varialdepid ), and third
is the estimte of the expected random varian@nyar ). The default estimate odnvar is
2, which is the expected random variance based upon the rectangular distributioqpéanta 5
item (i.e.,S=") calculated using the formutanvar=(A*21)/12where A represents the number
of response optiorsssociated with the scale anch@sehelp(rwg) , James et al., (1984), or
Bliese et al., (2000) for details on selecting appropretear values.

To use thewg function tocalculateagreement for theoping usingeligion item RELIG in
thebhr2000 dataframe) one would issue the following commands.

> RWG.RELIG<- rwg(bhr2000$RELIG,bhr2000$GRP,ranvar=2)
> RWG.RELIG[1:10,] #examine first 10 rows of data
grpid rwg gsize

10.11046172 59

20.26363636 45

30.21818983 83

40.31923077 26

50.22064137 82

6 0.41875000 16

7 0.05882353 18

8 0.38333333 21

90.14838710 31
0 100.13865546 35

POO~NO U WNE

This returns a datafnae with three columns. The first column contains the group names
(grpid ), the second column contains the Q@ualues—one for each group. The third column
contains the group size. To calculate the mggaalue use theummary command:

> summary(RW G.RELIG)
grpid rwg gsize
1 1 Min. :0.0000 Min. : 8.00

10 :1 1st Qu.:0.1046 1st Qu.: 29.50

11 :1 Median :0.1899 Median : 45.00

12 :1 Mean :0.1864 Mean 1 54.55
13 :1 3rd Qu.:0.2630 3rd Qu.: 72.50
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14 1 Max. :0.4328 Max. :188.00
(Other):93

Thesummary command informs us that the averaggvalue is .186 and the range is from 0
to 0.433. By convention, valuesatabove 0.70 are considered good agreement, so there
appears to be low agreement among individuals with regaabiog usingeligion. The
summary command also provides information about the group sizes.

Other useful options might include sorting tredues or examining the values in a histogram.
Recall that the notatio2] selects all rows and the second column oRMeéG.RELIGobject
—the column with theyg results.

> sort(RWG.RELIG[,2])
> hist(RWG.RELIGI,2])

To calculateryg for work hours, lhe expected random variance (E\eds to be changed from
its default value of 2 Work hours was asked using arddint item, so EV based on the

rectangular distributionev’) is 10.00 Sev°=(11%-1)/12)— see thewg helpfile for details).

> RWG.HRS< rwg(bhr2000$HRS,bhr2000$GRP,ranvar=10.00)
> mean(RWG.HRS[,2])
[1] 0.7353417

There is apparently much higher agreement about work hours than there was about whether
group memberasedreligionas a coping mechanisimthis sample. By convention, this mean
value would indicate agreement becauggand [y)) values above .70 are considered to
provide evidence of agreement.

The use of thewg.] function is nearly identical to the use of gy function except that
the first argument towg.] is a matrix instead of a vector. In the matrix, each column
represents one item in the miitem scale, and each row represents an individual response. For
instance, columns-22 inbhr2000 represent 11 items comprising a leadersicgle. The
items were assessed usingdnt response options (Strongly Disagree to Strongly Agree), so the
expected random variance is 2.

> RWGJ.LEAD<- rwg.j(bhr2000[,2:12],bhr2000$GRP,ranvar=2)
> summary(RWGJ.LEAD)
grpid rwg.j gsize
1 01 Min. :0.7859 Min. : 8.00

10 :1 1st Qu.:0.8708 1st Qu.: 29.50

11 :1 Median :0.8925 Median : 45.00

12 :1 Mean :0.8876 Mean :54.55

13 :1 3rd Qu.:0.9088 3rd Qu.: 72.50
14 :1 Max. :0.9440 Max. :188.00

(Other):93

Note that Lindell and colleagues (Lindell & Brandt, 1997, 1999; 2000; Lindell, Brandt &
Whitney, 1999) hee raised concerns about the mathematical underpinnings Qgghrmula.
Specifically, they note that this formula is based upon the Speda3naavn reliability estimator.
Generalizability theory provides a basis to believe that reliability shoatdase as the number
of measurements increase, so the SpeaiBnawn formula is defensible for measures of
reliability. There may beaotheoretical grounds, however, to believe that generalizability theory
applies to measures of agreement. That isethmary benoreason to believe that agreement
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should increase as the number of measurements in¢beds#so see LeBreton, James &
Lindell, 2005)

To address this potential concern with thgr Lindell and colleagues have proposed the
*wg()- The My is calculated by substituting the average variance of the items in the scale into
the numerator of.g formula in lieu of using theu formula (rwg = 1 Observed Group
Variance/Expected Random Variance). Note that Lindell and colleagues alsomecd
against truncating the Observed Group Variance value so that it matches the Expected Random
Variance value in cases where the observed variance is larger than the expected variance. This
results in a case whereygtj values can take on negativdues. We can use the function
rwg.j.lindell to estimate the 7y values for leadership.

> RWGJ.LEAD.LIN< - rwg.j.lindell(bhr2000[,2:12],
bhr2000$GRP,ranvar=2)
> summary(RWGJ.LEAD.LIN)

grpid rwg.lindell gsize
1 :1 Min. :0.2502 Min. : 8.00
10 :1 1st Qu.:0.3799 1st Qu.: 29.50
11 :1 Median :0.4300 Median : 45.00
12 :1 Mean :0.4289 Mean :54.55
13 :1 3rd Qu.:0.4753 3rd Qu.: 72.50
14 1 Max. :0.6049 Max. :188.00
(Other):93

The average Ky value of .43 is considerably lower than the averagg value of .89 listed
earlier.

3.3.2 The ggqIndex

Brown and Hauenstei(2005)argue that the. family of agreement indices haverée major
limitations: (1) the magnitude of the measures are dependent on sample size, (2) the scale used
to assess the construct influences the magnitude of the measure, and (3) the use of the uniform
null distributionis an invalid comparison upon whit¢o base an estimate of agreement. To
overcome these limitations, Brown and Hauenstein proposegdiveax as a mukrater
agreement measur e an dHeagniex s calcdate@usingeteigs kapp a.
function.

Theawg function has threergumentsx, grpid , andrange . Thex argument represents
the item or scale upon which to calculaggvalues. Thewg function determines whethgris
a vector (single item) or multiple item matrpepresenting the items insaale), and performs
thea,q calculation appropriate for the type of variable. The second fungtipia, , is a vector
containing the group idsssociated witthex argument. The third argumendnge , represents
the upper and lower limits of the response options. rdhge defaults toc(1,5) which
represents a-point scale from (for instance) strongly disagree (1) to strongly agree (5)

The code below illustrates the use of #iwegg function for the multitem leadership scale.

> AWG.LEAD<- awg(bhr2000[,2:12],bhr2000$GRP)
> sum mary(AWG.LEAD)
grpid a.wg nitems  nraters avg.grp.var
1 :1 Min. :0.2223 Min. :11 Min. : 8.00 Min. :0.2787
10 :1 1stQu.:0.3654 1stQu.:11 1stQu.:29.50 1stQu.:0.4348
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11 :1 Median :0.4193 Median :11 Median : 45.00 Median :0.5166

12 :1 Mean :0.4125 Mean :11 Mean :54.55 Mean :0.5157

13 :1 3rd Qu.:0.4635 3rd Qu.:11 3rd Qu.: 72.50 3rd Qu.:0.5692

14 :1 Max. :0.5781 Max. :11 Max. :188.00 Max. :0.9144
(Other):93

Notice that ratings of the a.wg tend to more similar in magnitude to g wWhich likely
reflects the facts that (a) largerices can result in negative ratings reflecting disagreement,
and (b) the denominator for the measure is fundamentally based upon the idea of maximum
possible variance (similarly to thewg;) rather than a uniform distribution.

One final note is thaBrown and Hauenstein (2005) contend that the clasg abreement
indices should not be estimated in cases where group size (or number of raters) is less than the
number of response options (scale anchasspciated with the items (A). In this examplas
5 representing the scale anchors from strongly disagree to strongly agceetrast, however,
Brown and Hauenstein (2008fate thatt is appropriate to estima#ggy onthe number of
anchors minus 1The reason why,g can be estimated on sn&ligroups is that,g (unlike fyg)
uses a sampleased variance estimate in the denominator wheggases a populatiehased
variance estimat@ecall that the formuléor the rectangular variance distribution is
ranvar=(A"21)/12which represents a polation-basedvalue (S=v°)). In the example there is no
issue with group size given that the smallest group has eight members.

3.3.3 Significance testing ofyg and 4 usingrwg.sim  andrwg.j.sim

As noted in sectioB.3.1, r,g and g values at or above .70 are conventionally considered
providingevidence of withirgroup agreement. A series of studies by Charnes and Schriesheim
(1995); Cohen, Doveh and Eick (2001); Dunlap, Burke, and S@riblve (2003) and Gen,
Doveh and Nahurshani 2009 lay the groundwork for establishing tests of statistical
significance for §g and tgj. The basic idea behind these simulatisn® draw observations
from a known distribution (generally a uniform random null), ampeagedly estimatg,g or
rwgg)- Because the observaticar®drawn from a uniform random nullyg or ryyg estimats will
frequentlybezero. Occasionally, however, the pr g values will be larger than zero
reflecting variations ithe patterrof random numbers drawn. Repeatettigwing random
numbers anéstimating g and fygg) provides a way to calculate expectedll values and
confidence intervals.

The simulations conducted by Cohen et al., (2001) varied a numfzetafs but the two
factorsfound to be most important for the expectedl values of the Ky were (a) group size
and (b) the number of items. Indeed, Cohen et al., (2001) founith¢hexpected nutg
valuesin the simulationgliffered considerablyasgroup size ad thenumber of itemyaried
These findings implythat the conventional value of .70 may be a reasonableffcutlue for
significancewith some configurations of group sizes and items, but may not be reasonable for
others. ThusCohen et al., (200kXcommended researchers simulate parameters based on the
specific characteristics of the researchers' samples when determining wigjivelues are
significant.

In 2003, Dunlap and colleagues estimated 95% confidence intervals for the singlg item r
usingthe idea of simulating null distributiond heirwork showed that the 95% confidence
intervalfor the single item measuvaried as a function ¢&) group size an¢b) the number of
response options. In the case of 5 response options (e.qg., \stlwmagree, disagree, neither,
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agree, strongly agree), the 95% confidence interval estimate varied from 1.00 with a group of 3
to 0.12 for a group of 150. That is, one would need,gestimate of 1.00 with groups of size

three to be 95% certain the gpsuagreed more than chance levels, but with groups of size 150
any value equal to or greater than Owiduld represensignificant greement.

The functionrwg.sim  provides a way to replicate the results presented by Dunlap and
colleagues. For instance,dstimate the 95% confidence interval for a group of size 10 on an
item with 5 response options one would provide the following parametersrioghsm
function:

> RWG.OUT< rwg.sim(gsize=10, nresp=5, nrep=10000)
> summary(RWG.OUT)
$rwg
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0000 0.0000 0.0000 0.1221 0.2167 0.8667

$gsize

[1] 10

$nresp

[1]5

$nitems

[1]1

$rwg.95

[1] 0.5277778

The results in the preceding example are based on 10,000 simulation runs. In contrast,
Dunlap et al., (2003)sed 100,000 simulation runs. Nonetheless, both Table 2 from Dunlap et
al., (2003) and the example above suggest that 0.53 is the 95% confidence interval estimate for a
group of size 10 with five response options. Note that a replication of these mesylbsoduce
slightly different values.

Because the estimation ofglin the simulations produces a limited number of possible
responses, the typical methods for establishing confidence intervals (e.g., the generic function
guantile ) cannot be used. Thufiemultilevel package providesquantile  method for
the objects of classgree.sim  created usingwg.sim . To obtain 90%, 95% and 99%
confidence interval estimates (or any other values) one would issue the following command:

> quantile(RWG.OUT,c(.90,. 95,.99))
guantile.values confint.estimate

1 0.90 0.4222222

2 0.95 0.5277778

3 0.99 0.6666667

Cohen et al(2009 expanded upon the work of Dunlap et al., (2003) and the early work by
Cohen et al. (20D by demonstrating how confidence interval estimation could be applied to
multiple item scales in the case @fg values. The functionvg.j.sim is based upon the
work of Cohen et al. 2009 and simulates,g) values from a uniform null distributiofor user
supplied values of (a) group size, (b) number of items in the scale, and (c) number of response
options on the items. The user also provides the numisanafation runsrgpetition$ upon
whichto base the estimates. In most cases, the nuaflsenulation runswill be 10,000 or
more althoughhe examplesllustrated heravill be limited to 1,000. The final optional
argument towg.j.sim  isitemcors . If this argument is omitted, the simulated items used
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to comprise the scale are assumebldandependent (necorrelated). If the argument is

provided, the items comprising the scale are simulated to reflect a given correlational structure.
Cohen et al., (2001) showed that results based on independetbfnelated) items were

similar toresults based on correlated items; nonetheless, the model with correlated items is more
realistic and thereby preferable (see Cohen e2@09. Estimating models with a correlational
structure requires thdASSpackage in addition to thmaultilevel padkage.

For an example of usingvg.j.sim with non-correlated items, consider a case where a
researcher was estimating the expected value and confidence interygis@f a sample where
group size was 15 using atém scale with 5 response options tloe items (A=5). The call to
rwg.j.sim  would be:

> RWG.J.OUT< - rwg.j.sim(gsize=15,nitems=7,nresp=5,nrep=1000)

> summary(RWG.J.OUT)
$rwg.j
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000000 0.000000 0.009447 0.161800 0.333900 0.713700
$gsiz e
[1] 15
$nresp
[1]5
$nitems
[1]7
$rwg.j.95
[1] 0.5559117

In this example, the upper expected 95% confidence interval is 0.56. This is lower than 0.70
andsuggesithat in this case the value of 0.70 might be too stringBased on this simulation,
one might justifiably conclud#hata value of 0.56 is evidence of significant agreement (p<.05).
Note that if one replicates this example one will get slightly different results because each run is
based on slightly different combinations of randondnerated numbers. Using the simulation,
one can show that as group size increases and the number of items increase, the criteria for what
constitutes significant agreement decreases.

To illustrate how significance testing Qg might be used in a reatic setting, we will
examine whether group members agreed about three questions specific to mission importance in
thelg2002 data set. This data set was also analyzed in Cohen22@8., We first begin by
estimating the mean.gj; for the 49 groups the sample. Notice that the mean estimate.fgy r
is .58. This value is below the .70 conventional criteria and suggests a lack of agreement.

> RWG.J<- rwg.j(1g2002[,c("TSIG01","TSIG02","TSIG03")],
[g2002$COMPID,ranvar=2)

> summary(RWG.J)

grpid rwg.j gsize

10 1 Min. :0.0000 Min. :10.00

13 1 1stQu.:0.5099 1stQu.:18.00

14 :1 Median :0.6066 Median :30.00

15 :1 Mean :0.5847 Mean :41.67

16 :1 3rd Qu.:0.70 91 3rd Qu.:68.00
17 :1 Max. :0.8195 Max. :99.00

(Other):43
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To determine whether the value of .58 is significant, one can usedtjesim  function
using item correlations and average group size (41.67 rounded to 42). In thiotaedghe
simulation suggests that a value of .35 is significant suggesting significant agreement. For
illustrations of how the simulations might be used in a gitoygroup basis see Cohen et al.,
(2009.

> RWG.J.OUT< - rwg.j.sim(gsize=42,nitems=3,nresp= 5,
itemcors=cor(1q2002[,c("TSIG01","TSIG02","TSIG03")]),
nrep=1000)

> summary(RWG.J.OUT)

Brwg.j

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.000000 0.000000 0.007224 0.088520 0.162500 0.548600

$gsize

[1] 42

$nresp

[1]5

$nitems

[1]3

$rw g.j.95

[1] 0.346875

3.3.4 Average Deviation (ADAgreement usingd.m

Burke, Finkelstein and Dusig (1999) proposed using average deviation (AD) indices as
measures of withigroup agreementCohen et al.(2009)note that AD indices are also referred
to as Mea or Median Average Deviation or MADAD indices are calculated by first computing
the absolute deviation of each observation from the mean or median. Second, these absolute
deviations are averaged to produce a single AD estimate for each itoeformula for AD
calculation on a single item:

AD =Z [j xXjN

wherex;; represents an individual observation (i) in group;jjtepresents the group mean or
median, and N represents the group si&hen AD is calculated on a scale, the AD formula
aboveis estimated for each item on the scale, @achitem's AD value isaveraged to compute
thescale ADscore

AD values are considered practically significant when the valudesa¢harA/6 where A
represents the number of response options on the Eeminstance, A is 5 when items are asked
on a Strongly Disagree, Disagree, Neither, Agree and Strongly Agree format.

The functionad.m is used to compute the average deviation of the mean or median. The
function requires the two argumemntsandgrpid . Thex argument represents the item or scale
upon which one wants to estimate the AD value. 8dten function determines whetheris a
vector (single item) or multiple item matrfrultiple items representingsezale) and peforms
the AD calculation appriate for thenature of the inpwtariable. The second functiogrpid ,
is a vector containing the group ids of thargument. The third argument is optional. The
default value is to compute the Average Deviation of the mean. The other optichastye
thetype argument torhedian " and compute the Average Deviation of the median.
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For instance, recall that columnsl2 inbhr2000 represent 11 items comprising a
leadership scale. The items were assessed uginmbresponse options (Stronglydagree to
Strongly Agree), so the practical significance of the AD estimate is 5/6 or 0.833. The AD
estimatsfor the first five groupsnd themean of the overalample ar@rovided below:

> data(bhr2000)
> AD.VAL < - ad.m(bhr2000], 2:12], bhr2000$GRP)
> AD.VAL[1:5,]
grpid  AD.M gsize
1 10.8481366 59
2 20.8261279 45
3 30.8809829 83
4 40.8227542 26
5 50.8341355 82
> mean(AD.VAL[,2:3])
AD.M  gsize
0.8690723 54.5454545

Two of the estimates are letsan 0.833 suggesting these two groups (2 and 4) agree about
ratings of leadership. The overall AD estimate is 0.87, which is also higher than 0.83 and
suggests a general lack of agreement.

The AD value estimated using the median instead of the meamtirast, suggests
practically significant agreemefudr the sample as a whole

> AD.VAL < - ad.m(bhr2000], 2:12], bhr2000$GRP,type="median")
> mean(AD.VAL[,2:3])
AD.M  gsize
0.8297882 54.5454545

To use thead.m functionfor single item variablesuch as the work hours (HRS) variable in
the bhr2000 data s#tis only necessary to provide a vector instead of a matrix as the first
argument to thad.m function. Recall the work hours variable is asked on apdlrit response
format scale so practl significance is 11/6 or 1.83. The average observed value of 1.25
suggests agreement about work hours.

> AD.VAL.HRS < - ad.m(bhr2000$HRS, bhr2000$GRP)
> mean(AD.VAL.HRSJ[,2:3])
AD.M gsize
1.249275 54.545455

3.3.5 Significance testing of AD usingd. m.sim

The functionad. m.sim is usedo simulate AD values and test for significarafevarious
combinations of group size, number of response options and number of items in ftatiple
scales Thead. m.sim function issimilar to therwg.sim andrwg.j. sim functions used to
test the significance of,g and t.q;); however, unlike the functions for the two forms of the r
thead. m.sim function works with both single items and multiilem scales.

Thead. m.sim function is based upon the work@dhen etl. (2009 andof Dunlap et al.,
(2003) The functiorsimulatesAD values from a uniform null distribution for user supplied
values of (a) group size, (b) number of items in the scale, and (c) number of response options on
the items.Based on Cohen ek £2009, the final optional parameter allows one to include
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correlations among items when simulating multipden scales.The user also provides the
number of simulation runs (repetitions) upon which to base the estindggas in practicethe
numbe of simulation runs wiltypically be 10,000 or more although the examples illustrated
here will be limited to 1,000.

To illustrate thead. m.sim function consider the 11 leadership items in the bhr2000
dataframe. Recall the AD value based on the rsaggested that groups failed to agree about
leadership. In contrast, the AD value based on the median suggested that groups agreed. To
determine whether the overall AD value based on the mean is statistically significant, one can
simulate data matchinge characteristics of the bhr2000 sample:

> AD.SIM< - ad.m.sim(gsize=55,nresp=5,
itemcors=cor(bhr2000[,2:12]),type="mean",nrep=1000)
> summary(AD.SIM)
$ad.m
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.087 1.182 1.208 1.209 1.236 1.340

$gsize
[1] 55

$nresp
[1]15

$nitems
[1] 11

$ad.m.05
[1] 1.138212

$pract.sig
[1] 0.8333333

The simulation suggests that any AD mean value less than or equal to 1.14 is statistically
significant. Thus, while the AD value for the leadership items (0.8%) mot meet the criteria
for practical significance, it does for statistical significan@es with the {4 simuation
functions, thead.m.sim function has a specifically associatpgantile  function to identify
different cutoff points. The example beloillustrates how to identify values corresponding to
the .90 (.10), .95 (.05) and .99 (.01) significance levels. That is, to be 99% certain that a value
was significant, it would need to be smaller than or equal to 1.114.

> quantile(AD.SIM,c(.10,.05,.0 1))
guantile.values confint.estimate

1 0.10 1.155763

2 0.05 1.138212

3 0.01 1.114170

3.3.6 Agreement: Random Group Resampling

The final agreement related function in the multilevel libramgisagree . In some ways
this function is similar to thewvg.j.sim  function in that it uses repeated simulations of data to
draw inferences about agreement. The difference is thegitlagree  function uses the
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actual group data, while tmevg.j.sim  function simuétes from an expected distributi(the
uniform null).

Thergr.agree  function (a) uses Random Group Resampling to create pseudo groups and
calculate pseudo group variances, (b) estimates actual group variances, and (c) performs tests of
significance to detrmine whether actual group and pseudo group variances differ. To use
rgr.agree , one must provide three variables. The firstis a vector representing the variable
upon which one wishes to estimate agreement. The second is group membepghip.( The
third parameter is the number of pseudo groups that one wants to create.

The third parameter requires a little explanation, because in many cases the number of pseudo
groups returned in the output wilbt exactly match the third parameter. For instaiceur
example, we will request 1000 pseudo groups, but the output will return only 990. This is
because thegr.agree  algorithm creates pseudo groups that are identical in size
characteristics to the actual groups. In so doing, however, the algorghtessets of pseudo
groups in “chunks.” The size of each chunk
groups. So, for instance, if there are 99 actual groups, then the total number of pseudo groups
must be evenly divisible by 99. Niteindredandninety is evenly divisible by 99, while 1000
is not. Rather than have the user determine what is evenly divisible by the number of groups,
rgr.agree  will do this automatically. Below is an example of usiggagree  on the
work hours variable.

> RGR.HRS<- rgr.agree(bhr2000$HRS,bhr2000$GRP,1000)

The first step is to create an RGR Agreement object n&BRIHRS The object contains a
number of components. In most cases, however, users will be interested in the estirahted z
indicating whether # within-group variances from the actual groups are smaller than the
variances from the pseudo groups. A useful way to get this information is to ssenimary
command. Whesummary is applied to the RGR agreement object it provides standard
deviations variance estimates, an estimate of tvalze, and upper and lower confidence
intervals.

> summary(RGR.HRS)
$"Summary Statistics for Random and Real Groups"

N.RanGrps Av.RanGrp.Var SD.Rangrp.Var Av.RealGrp.Var Z - value
1 990 3.322772 0.762333 2.646583 - 8.82554
$"Lower Confidence Intervals (one - tailed)"

0.5% 1% 2.5% 5% 10%
1.648162 1.795134 1.974839 2.168830 2.407337

$"Upper Confidence Intervals (one - Tailed)"
90% 95% 97.5% 99% 99.5 %
4.251676 4.545078 4.832813 5.642410 5.845143

The first section of the summary provides key statistics for contrasting wgitbup variances
from real group with withirgroup variances from random groups. The second and third sections
provide lower ad upper confidence intervals. Keep in mind that if one replicates this example
one is likely to get slightly different results. This is becauseghagree  function uses a
random number generator to create pseudo groups; thus, the results are panealyct of the
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specific numbers used in the random number generator. While the exact numbers may differ, the
conclusions drawn should ltige same

Notice inthefirst section that although we requested 1000 random groups, we got 990 (for
reasons descrdal previously). The first section also reveals that the average ‘gt
variance for the random groups was 3.32 with a Standard Deviation of 0.76. In contrast, the
average withirgroup variance for the real groups was considerably smaller at P@5.
estimated alue suggests that, overall, the witlgroup variances in ratings of work hours from
real groups were significantly smaller than the witioup variances from the random groups.
This suggests that group members agree about work hRecsll that a zalue greater than or
less than 1.96 signifies significance at p<.05,-taited.

The upper and lower confidence interval information allows one to estimate whether specific
groups do or do not display agreement. For instance, onlyf 8 pseudo groups had a
variance less than 2.17. Thus, if we observed a real group with a variance smaller than 2.17, we
could be 95% confident this group variance was smaller than the variances from the pseudo
groups. Likewise, if we want to be 90%né¢ident we were selecting groups showing
agreement, we could identify real groups with variances less than 2.41.

To see which groups meet this criterion, usetdipply  function in conjunction with the
sort function. Theapply function partitions thdirst variable by the level of the second
variable performs the specified function much likedggregate function (see sectioB.2.?.
Thus,tapply(HRS,GRP,var) partitions HRS into separate Groups (GRP), and calculates
thevariance for each groupdr ). Usingsort in front of this command simply makes the
output easier to read.

> sort(tapply(bhr2000$HRS, bhr2000$GRP, var))
33 43 38 19 6 39 69 17
0.8242754 1.0697636  1.1295681 1.2783251 1.3166667 1.3620690 1.4566667 1.4630282
20 99 98 44 4 53 61 63
1.5009740 1.5087719 1.5256410 1.5848739 1.6384615 1.6503623 1.6623656 1.7341430
66 14 76 71 21 18 59 50
1.7354302 1.7367089 1.7466200 1.7597586 1.7808500 1.7916027 1.8112599 1.8666667
48 60 83 8 22 2 75 11
1.8753968 1.9267300 1.9436796 1.9476190 1.9679 144 2.0282828 2.1533101 2.1578947
96 23 54 47 55 26 74 57
2.1835358 2.1864802 2.2091787 2.2165242 2.2518939 2.2579365 2.2747748 2.2808858
45 97 64 35 32 41 1 24
2.2975687 2.3386525 2.3535762 2.3563495 2.3747899 2.4096154 2.4284044 2.4391678
82 37 81 68 42 73 34 25
2.4429679 2.4493927 2.5014570 2.5369458 2.5796371 2.6046154 2.6476418 2. 6500000
93 62 92 12 40 8 5 29
2.6602168 2.7341080 2.7746106 2.7906404 2.7916084 2.8505650 2.8672087 2.8748616
85 70 77 51 3 13 79 87
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2.89 74843 2.9938483 3.0084034 3.0333333 3.0764032 3.1643892 3.1996997 3.2664569
7 95 78 8 46 27 36 15
3.2712418 3.2804878 3.3839038 3.3886048 3.4084211 3.4309008 3.4398064 3.4425287
89 6 58 49 9 31 90 72
3.4444444 3.4461538 3.4949020 3.5323440 3.6258065 3.6798419 3.8352838 3.9285714
91 80 8 10 94 28 30 56
3.9565960 3.9729730 3.9753195 4.0336134 4.0984900 4.0994152 4.6476190 4.7070707
65 52 67
4.7537594 5.2252964 5.3168148
If we starting counting from group 33 (the group with the lowest variance of 0.82) we find 46

groups with variances smaller than 2.41. Thawesfind 46 groups that have smaller than
expected variance using the 90% confidence estimate.

It may also be interesting to see what a “I a
group variances. This information is found in the third part@ftmmary of th@ GR.HRS
object. A variance of 4.55 is in the upper 95% of all random group variances. Given this
criterion, we have five groups that meet or exceed this standard. In an applied setting, one might
be very interested in examining this apgnt lack of agreement in groups 30, 56, 65, 52 and 67.
That is, one might be interested in determining what drives certain groups to have very large
differences in how individuals perceive work hours.

Finally, for confidence intervals not given in thevsmary, one can use theantile
function with the random variancdeRGRVARBIN theRGR.HRSobject. For instance to get the
lower .20 confidence interval:

> quantile(RGR.HRS$RGRVARS, c(.20))
20%
2.695619
Note thatrgr.agree  only works on vectorsConsequently, to usgr.agree  with the
leadership scale we would need to create a leadership scale score. We can do this using the
rowMeans function. We will create a leadership scdl&AD and put it in thddhr2000
dataframe, so the specific commamel issue is:

>bhr2000$LEAD< - rowMeans(bhr2000[,2:12])

Now that we have created a leadership scale score, we can perform the RGR agreement
analysis on the variable.

> summary(rgr.agree(bhr2000$LEAD,bhr2000$GRP,1000))

$"Summary Statistics for Random and Rea | Groups"

N.RanGrps Av.RanGrp.Var SD.Rangrp.Var Av.RealGrp.Var Z - value
1 990 0.6011976 0.1317229  0.5156757 - 6.46002
$"Lower Confidence Intervals (one - tailed)"

0.5% 1% 2.5% 5% 10%
0.2701002 0.3081618 0.3 605966 0.3939504 0.4432335
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$"Upper Confidence Intervals (one - Tailed)"
90% 95% 97.5% 99% 99.5%
0.7727185 0.8284755 0.8969857 0.9651415 1.0331922

The results indicate that the variance in actual groups about leadership sasiggsficantly

smaller than the variance in randomly created groups (i.e., individuals agree about leadership).
For interesting cases examining situations where group membeat aigree see Bliese &
Halverson (1998a) and Bliese and Britt (2001).

Ongoirg research continues to examine the nature of RGR based agreement indices relative to
ICC(1), ICC(2) and other measures of agreement such agtfeeg.,Lidtke & Robitzsch,
2009. This work indicates that measures of RGR agreement are strongly teltied
magnitude of the ICC values.

3.3.7 Reliability: ICC(1) and ICC(2)

The multilevel package also contains the reliability functit@€1 andICC2. These two
functions are applied to ANOVA models and are used to estimate ICC(1) and ICC(2) as
described by Brtko, (1976), James (1982), and Bliese (2000). To use these functions, one first
performs a onavay analysis of variance on the variable of inteusgtg theaov (ANOVA)
function. Noicetheas.factor  function on GRRn the command belowTheas.facto r
functiondesignateshat GRP (which issnumericvecto) is categorical; consequently, R creates
N-1 dummy codes in the model mattiging GRP 1 as the referertlore specifically, the
contrast default ims.factor IS contr.treatment which uses the fitdactor as the
referent; howevemR provides numerous options for controlling dummy and effects cedieg
help(contrasts) for details In the present example, tB8® groupgesults in98 dummy
coded categories (98 df). Interested readers who estiheateodel without thas.factor
option will see that GRP erroneously only accounts for 1 df iaghiactor  command is
omitted.

> data(bhr2000)
> hrs.mod< - aov(HRS~as.factor(GRP),data=bhr2000)
> summary(hrs.mod)

Df Sum Sg Mean Sq F value Pr(>F)
as.factor(GRP) 98 3371.4 34.4 12.498<2.2e - 16 ***
Residuals 5301 14591.4 2.8

Signif. codes: 0 ™' 0.001 "**' 0.01 "*' 0.05".'0.1 ™' 1

ThelCC1 andICC2 functions are then applied to thev object.

> |CC1(hrs.mod)
[1] 0.1741008
> |CC2(hrs.mod)
[1] 0.9199889

Bliese (2000) provides a thorough interpretation of these values, but briefly, the ICC(1) value
is equivalent to the ICC term referred to the mie@i@cts model literature (e.g., Bryk &
Raudenbush, 1992; 2002) and a vadfi€l 7 indicates that 17% of the variance in individual
perceptions of work hours can be fsamgaduai ned”
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of groupmean reliability and @alue of .92 indicates that groups carréebly differentiated in
terms of average work hours.

3.3.8 Estimate multiple ICC valuesnult.icc

Themult.icc  function can be used to estimate multiple ICC(1) and ICC(2) values in a
given data set. For instantke code teestimate the ICC(1)mal ICC(2) \alues for work hours,
coping with religionand three different leadership items in bie2000 data sets provided
below. In the function, the first element is@bset of thelataframe with the variables of interest
and the second element is the grogpmariable.

> mult.icc(bhr2000[,c("HRS","RELIG","AF06","AF07","AP12")],bhr2000$GRP)
Variable ICC1 ICC2
HRS 0.177543969 0.9217206
RELIG 0.009801542 0.3506163
AF06 0.103492912 0.8629524
AF07 0.087490365 0.8394800
AP12 0.149052933 0.9052514

ab~hwNPRE

The results suggest thatlividuals use of religion as a coping mechanisadthe lowest
ICC(1) value. Note that thmult.icc  function is based updme from thenime package so
the difference$or Work Hoursbetween the IC(1) and ICC(2)values estimated imult.icc
(0.178 and 0.92Zespectivelyversus using thECC1 andICC2 functions(0.174 and 0.920%
thatmult.icc  uses restricted maximum likelihogBEML) to derive estimates arbe
functionsICC1 andICC2 are based onrdinary least squares (OLS) ANOVA models. One
other differencénot illustrated here) is that ICC(1) values estimated in OLS can be negative, but
ICC(1) values in mixegffects models have a lower bound of zénayeneral, the preferred
method with unbaleced data would be to ubre .

3.3.9 Comparing ICC values with a twaiage bootstragnoot.icc

When examining ICC values,dganoften be informative to estimate a sampling distributmn
determine whether ICC values differ. For instance, the ICC(1) vidu®gork Hours is 0.178
(mixed-effects model)but it is not clear whether the other values which are lower significantly
differ from 0.178 One way to answer the question of whether ICC values differ is to esimate
measure of variability around the pointiemtes. Théoot.icc  function performs a twstage
bootstrap A two-stagefirst sampéswith replacement from levé units (the groupdpllowed
by sampling with replacement from individuals within the leRelnits. The function is
computationally intasive but is illustrated belowoth with usingme (the default) an@ov (an
option) as the computationalgorithm underlying the ICC(1) estimate

> system.time(OUT.HRS.Ime< - boot.icc3(bhr2000$HRS,bhr2000$GRP,1000))
user system elapsed
292.87 0. 53 295.86
> quantile(OUT.HRS.Ime,c(0.025,.975))
25% 97.5%
0.1372000 0.2211409

> system.time(OUT.HRS.aov< - boot.icc3(bhr2000$HRS,bhr2000$GRP,1000,
aov.est=TRUE))
user system elapsed
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301.93 3.35 307.89
> quantile(OUT.HRS.aov,c(0.02 5,.975))
25% 97.5%
0.1302396 0.2160199

Notice that theaov option is slightly slower and the values are slightly smaller which is not
surprising given that theov estimate of the ICQ) is smaller than thkne estimate. Tielme
percentilebased 95% confidence interval for the ICC(1) for work hours is [@,XB221]
suggesting that single point estimaté$CC(1) valuesoutside this range woukilgnificantly
differ from those associated with Work Houhs the example usinguult.icc  everything
except AP12I(am impressed by the quality of leadership in this comphay asmalleriCC(1)
value tharthe lower confidence intervaf 0.137for work hours. Note that a moreattough
comparison would involve estimating confidence intervals for AP#2uaimg both sets of
confidence intervals to draw inferences (Cummings & Finch, 2005).

3.3.10 Visualizing an ICC(1) witlgraph.ran.mean

It is often valuable to visually examine the grdapel properties of data to see the form of
the grouplevd effects. Levin(1967)observedhat high ICC(1) valugcan be the product of one
or two highly aberrant groups rather than indicating generally shared group properties among the
entire sample.

One way to examine the grolgvel properties of the data is to contrast theeobed group
means with group means that are the result of randomly assigning individuals to pseudo groups.
If the actual group means and the psegdmp means are identical, there is no evidence of
group effects. If one or two groups are clearly ddferfrom the pseudgroup distribution it
suggests the ICC(1) value is simply caused by a few aberrant observations. If a number of
groups have higher than expected means, and a number have lower than expected means, it
suggests fairly weldistributed goup-level properties.

Thegraph.ran.mean function allows one to visually contrast actual group means with
pseudo group means. The function requires three parameters. The first is the variable on which
one is interested in examining. The second is thegydesignator, and the third is a smoothing
parameterrreps ) determining how many sets of pseudo groups should be created to create the
pseudo group curve. Low numbers (<10) for this last parameter create a choppy line while high
numbers (>25) create sioth lines. In cases where the parametatci is TRUE (see
optional parametersjreps should equal 1000 or more.

Three optional parameters control the y axis linitsifs  ); whether a plot is created
(graph=TRUE) or a dataframe is returnegréph=FA LSE); and whether bootstrap confidence
intervals are estimated and plottéd¢tci=TRUE ). The default fotimits  is to use the
lower 10% and upper 90% values of the raw data. The defagjtefph is to produce a plot,
but returning a dataframe can befus for exporting results to other graphing software. Finally,
the default fobootci is to return a plot or a dataframe without bootstrap confidence interval
estimatesin the following example, we plot the observed and pseudo group distribution of the
work hours variable from the data set bhr2000.

> data(bhr2000)
> graph.ran.mean(bhr2000$HRS,bhr2000$GRP,nreps=1000,
limits=c(8,14),bootci=TRUE)



Multilevel Models in R44

Thefunctionproduce the resulting plot where the bar chart represents each groups' average
rating of work hairs sorted from highest to lowest, and the line represents a random distribution
where 99 pseudo groups (with exact size characteristics of the actual groups) were cr@ated 100
times and the sorted values were averaged across the 1000 iterations. éichendstrepresent
the upper and lower 95% confidence interval estimates. In short, the line represents the expected
distribution if there were no grotlpvel properties associated with these data. The graph
suggests fairly evenly distributed grelgvel properties associated with the datédnough two
groups do stand odtone on the extreme high end and one on the extreme lavneihé end,
though,thegraph along with theesults from the tw«stage bootstrap analys@ection3.3.11)
which placel the ICC(1) estimate of 0.178 fairly close to the center 098% confidence
interval of[0.137, 0.221] suggesthat the ICC(1) values are not being driven by extreme
groups(experience with other data suggests that a few egtgFoupsstand out in graphs and
they alsgproduce confidence intervals asymmetrical to the point estimate)
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3.3.11 Simulating ICC(1) valuewith sim.icc

ICC(1) valuelay a key role inultilevel datatherefore, the ability to simulate ICC(1)
values can bewaaluable tool to help understand multilevel data and analysessifiliec
functiongeneratedata with specific ICC(1) values. Multiple vectors (items) can be generated in
one of two ways: either with or without levklcorrelations. The function ise to generate a
single vectorYVARI) below:

> set.seed(1535324)
> |CC.SIM< - sim.icc(gsize=10,ngrp=100,icc1=.15) #Simulate a single vector
> |CC.SIM[c(1:3,11:13),] # Examine a few rows of simulated data

GRP VAR1
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1 0.2800938

1 -1.400286 9
1 - 2.1422593
2 -1.3098119
2 -2.7164491
2

1
2
3
1
1
1 - 0.3160884

1
2
3

> |CC1l(aov(VAR1~as.factor(GRP), ICC.SIM))
[1] 0.16681

In the next example, four items are generated without any-legetrelation among items.
These data would represent a dituain which any observegw correlation would be the due
to the ICC(1) value. The example below usesitbba function discussed in secti@5.1to
perform a variance decompositionsaverakaw correlatios.

> set.seed(l  5324)
> |CC.SIM< - sim.icc(gsize=10,ngrp=100,icc1=.15,nitems=4)
> mult.icc(ICC.SIM[,2:5],ICC.SIM$GRP)
Variable ICC1 ICC2
VAR1 0.2035837 0.7188047
VAR2 0.1442111 0.6275778
VARS3 0.2229725 0.7415725
VAR4 0.1549414 0.6470794

A WNBE

> with(ICC.SIM,waba(VAR1,VAR2,GRP))$Cov.Theorem #Examine CorrW
RawCorr EtaBx EtaBy CorrB EtaWx EtaWy Corrw

1 0.07728039 0.530273 0.4775097 0.5939511 0.847827 0.8786265 - 0.09815005
> with(ICC.SIM,waba(VAR1,VAR3,GRP))$Cov.Theo rem #Examine CorrW

RawCorr EtaBx EtaBy CorrB EtaWx EtaWy Corrw
1 0.1769287 0.530273 0.5464122 0.6723887 0.847827 0.8375164 - 0.02520087

> with(ICC.SIM,waba(VAR1,VAR4,GRP))$Cov.Theorem #Examine CorrW
RawCorr EtaBx EtaBy CorrB Etawx EtaWy CorrW
1 0.1943248 0.530273 0.4874644 0.6127858 0.847827 0.8731429 0.04853107

Notice thathe ICC(1) values for each item are variable (a function of small group sizes and a
relatively small number of groups). Natialso that th€orrW (within-group correlation)
values for three of the bivariate correlatimasy aroundzero whileRawCorr (the raw
correlations) vaesaround .15 (the ICC(1) value)

As a final example, the code belawcorporates levetl correlaton of .30 among variables.
Notice that the withirgroup correlation varies around .30 and the raw correlation incraaises
function of the levell correlation and the ICC(1) value

> set.seed(15324)
> |CC.SIM< - sim.icc(gsize=10,ngrp=100,icc1=.15,nitems= 4,item.cor=.3)
> mult.icc(ICC.SIM[,2:5],ICC.SIM$GRP)
Variable ICC1 ICC2
VAR1 0.1669452 0.6671118
VAR2 0.1558558 0.6486689
VARS3 0.1381652 0.6158502
VAR4 0.1715351 0.6743219

A WNBE
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> with(ICC.SIM,waba(VAR1,VAR2,GRP))$Cov.Theore m #Examine CorrW
RawCorr EtaBx EtaBy CorrB EtaWx EtaWwy CorrW
1 0.3987741 0.498367 0.4883034 0.6976093 0.8669662 0.8726739 0.3026887

> with(ICC.SIM,waba(VAR1,VAR3,GRP))$Cov.Theorem #Examine CorrWW
RawCorr EtaBx EtaB y CorrB EtaWx Etawy CorrW
1 0.3746905 0.498367 0.4718088 0.7083573 0.8669662 0.8817009 0.2722794

> with(ICC.SIM,waba(VAR1,VAR4,GRP))$Cov.Theorem #Examine CorrW
RawCorr EtaBx EtaBy CorrB EtaWx EtaWwy CorrW
10.37 32463 0.498367 0.5024739 0.7104143 0.8669662 0.8645924 0.2606111

3.4 Regression and Contextual OLS Models

Prior to the introduction of multilevehixed-effectsmodels, OLS regression models were
widely used to detect contextual effects. Firebaugh (1978)da®a good methodological
discussion of these types of contextual models as does Kreft dneeDe (1998) and James
and Williams (2000).

The OLS regression functidm can beused to estimate contextual regression models. In the
Im models, both the rapredictor andhe groupmean of thesame predictoare included in the
model. A significantgroupmeanpredictor indicates thdhe slope of thegroupmean
relationshipbetween predictor and outcordéfers from the slope of the individuédvel
relationsip between predictor and outcome and suggestsignificant groupmean effect
suggestshata contextual effect is present (Firebaugh, 1%f8jders & Bosker, 1999For
instance, Bliese (2002) found that both individual reports of work hours andjagauplevel
work hours explained unique variance in wsding. The significant effect for groupean work
hours implied that the slope between work hours andheatig based on group means differed
from the slope based on individual ratings of wookits and welbeing.

Despite the appeal of being able to use a standard regression function to estimate contextual
models there is an important caveat. Specifically, the standard error associated with the group
level effectwill typically betoo small poducing tests that are too liberal. For this reason
mixed-effectsmodels areghe more appropriat@ay to identify contextual effegtand one should
be wary of contextual model results based on standard regression approaches

3.4.1 Contextual Effect Example

In this examplewe use thdh1996 dataframe to illustratacontextual modehvolving
work hours, group work hours and wbkingpresented in Bliese (2002)hebh1996
dataframe has group mean variables included; however, wemtlthe group meanariables
toillustrate the use of theggregate andmerge functions.

> data(bh1996)

> names(bh1996)

[1] "GRP"  "COHES" "G.COHES" "W.COHES" "LEAD" "G.LEAD"
[7] "W.LEAD" "HRS" "G.HRS" "W.HRS" "WBEING" "G.WBEING"
[13] "W.WBEIN G"

> TDAT<- bh1996[,c(1,8,11)] # a dataframe with GRP, HRS and WBEING
> names(TDAT)
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[1] "GRP" "HRS" "WBEING"

> TEMP<- aggregate(TDAT$HRS, list(TDAT$GRP),mean,na.rm=T)
> names(TEMP)

[1] "Group.1" "x"

> names(TEMP)< - ¢("GRP","G.HRS")

> TBH1996< - merge(TDAT, TEMP,by="GRP") #merge group and individual data
> names(TBH1996)
[1] "GRP" "HRS" "WBEING" "G.HRS"

> tmod< - IM(WBEING~HRS+G.HRS,data=TBH1996) #estimate the linear model
> summary(tmod,cor=F)
Call:
Im(formula = WBEING ~ HRS + G.HRS, data = TBH1996)
Residuals:

Min 1Q Median 3Q Max
-2.87657 -0.57737 0.03755 0.64453 2.37267
Coefficients:

Estimate Std. Error t value Pr(>[t])

(Intercept) 4.783105 0.136395 35.068 <2e - 16 %
HRS - 0.046461 0.004927 -9.431 <2e -16**
G.HRS - 0.130836 0.013006 -10.060 <2e -16**

Signif. codes: 0 "***' 0.001 **' 0.01 ™' 0.05°.'0.1"'1

Residual standard error: 0.8902 on 7379 degrees of freedom

Multiple R - Squared: 0.0398, Adjusted R - squared: 0.03954
F- statistic: 152.9 on 2 and 7379 DF, p -value: O

Notice thatG.HRSis significant with a-value 0f—10.060suggesting aignificant contextual
effect. The following commands plot tHerm of the relationshighowing that the groumean
slope (the dotted line) is considerably steeper than the individual slope (the salid line)

> plot(TBH1996$HRS, TBH1996$WBEING,xlab="Work Hours",
ylab="Well - Being",type="n") #type = n omits the 7,382 points

> abline(IM(WBEING~HRS,data=TBH1996)) # plots the individual - level slope
> abline(IM(WBEING~G.HRS,data=TBH1996),Ilty=2) #group - level slope
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As noted, vhile contextual models are valuahtlegy fail to appropriatelpccount for the fact
that individuals are nested within groups. In essencentuelsare based on the assumption
that observations are independent instead of acknowledging that responses from individuals
the same groumight be more similar than would be expected by chdndhis example
individual responses on wddkeing aranfluenced by group membershipthe form of a non
zero ICC(1) valudas we will show later)The nonindependence in webleing produces
standard errorthat are biasetoo smal) producingin inflated tvalues We illustrate the
estimation ofa mixed-effectscontextuaimodelin sectiord. For more details on the effects of
norrindependence see Bliese (2002); Bliese and Hanges (2004); Kenny and Judd, (1986) and
Snijders and Bosker, (1999).

3.5 Correlation Decomposition and the Covariance Theorem

OLS contextual models provide a way of determining whether regression slopes based on
group means differ from regression slopes of individea| variablegwhile OLS contextual
models are biased by being too liberal, a null effect floese models is informativelhe
covariance theorem provides a simégproacHor correlations nested in a twevel structure.
Essentially, the covariance theorem allows one to break down a raw correlation into two separate
components- the portion othe raw correlation attributable to withgroup (individual)
processes, and the portion of the correlation attributable to betyveep (groupevel)
processes.

Robinson (1950) propodéhe covariance theorerandDansereau and colleagues
incorporaed he theorenit into an analysis system they labeled WABA for WitAind-
BetweenAnalyses (Dansereau, Alutto & Yammarino, 1984). WABA is actually two integrated
procedures, WABA | and WABA 1l. WABA | uses a set of decision tools based on eta values to
inform decisions about the individual or grelgvel nature of the datéta valueshoweverare
highly influenced by group sizandunfortunateyWABA | makes no group size adjustments;



Multilevel Models in R49

consequently, there is little valueusingWABA | criteriaunless onés working with dyads
(see Bliese, 2000; Bliese & Halverson, 1998b).

Arguably a more useful way of drawing inferences fromvetiaes is to contrast etalues
from actual groups to etaalues from pseudo groups. We will illustrate this in a Randompsrou
Resampling extension of the covariance theorem decomposition (see 8e&@on

3.5.1 Thewaba andcordif functions

Dansereau et al.’'s (1984) WABA Il revolves
components, and thveaba function in the multilevel library provides the covariance theorem
components for the relationship between two variables. For example, to decompose the
correlation between work hours and wiedling into the betweegroup and withirgroup
component we woul@sue the following command. Note that for comparative purposes we use
the same data as we did in OLS contextual model example (s@ctidn

> waba(bh1996$HRS,bh1996$WBEING,bh19963GRP)
$Cov.Theorem

RawCorr EtaBX EtaBY CorrB  EtaWX EtaWy CorrW
1 -0.1632064 0.3787881 0.2359287 -0.7121729 0.9254834 0.9717704 -0.1107031
$n.obs
[1] 7382
$n.grps
[1] 99

Thewaba function returns a list with three elements. The first element is the covariance
theorem wih all its components. The second element is the number of observations used in the
estimate of the covariance theorem. The third element is the number of groups. The latter two
elements should routinely be examined becausedba function, by defaultperforms listwise
deletion of missing values.

This formula shows that the raw correlation.d63=(EtaBX*EtaBY*CorrB) +
(EtaWX*EtaWY*CorrW) or (.379*.236%*.712)+(.925*.972%*.111). Everything in the first set of
parentheses represents the betwgrenip @mponent of the correlation, and everything in the
second set of parentheses represents the vgtbimp component of the correlation.

The groupmean correlation of 71 definitely looks larger than the withgroup correlation of
-.11. Furthermore, sindbese two correlations are independent, we can contrast them using the
cordif ~ function. This function performs an r to z' transformation of the two correlations (see
also thetoz function) and then tests for differences between the two z' values kising t
formula provided in Cohen and Cohen (1983, p. 54). There are four arguments that must be
provided tocordif . These are (1) the first correlation of interest, (2) the second correlation of
interest, (3) the N on which the first correlation is based,(dpthe N on which the second
correlation is based. In our example, we already have the two correlations of inrtEBean ¢
.66); to get the N for the betwegnoup correlation, we need to know the number of groups. We
can get this N by determinifgpw many unique elements there are in GRP.

> length(unique(bh1996$GRP))
[1] 99
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The N for the withirgroup correlation is slightly more complicated. It is calculated as the
total N minus the number of groups (see Dansereau, et al., 1984). In our exeenglieady
know that the total N is 7,382 from timaba function output. We also know that the number of
groups is 99. Thus, the N for the witkgnoup correlation is 7,3829 or 7,283. For illustrative
purposes, however, we will use thw functionto get the number of observations.

> nrow(bh1996) -99
[1] 7283

With this information, we have all the necessary components faotidg  function.

> cordif( -.1107, -.7122,7283,99)
$"z value"
[1] 7.597172

The zvalue is larger than 1.96, so we conclud the two correlations are significantly
different for each other. That is, the betwegaup correlation is significantly larger than the
within-group correlation. This finding mirrors what we found in our contextual analysis. Note
that the withingroup correlation is based on X and Y deviation scores. These deviation scores
are estimated by subtracting the group mean of X from X, and the group mean of Y from Y. In
mixed-effectsmodeling, these deviation scores geferred to agroupmean centeredcsres.

3.5.2 Random Group Resampling of Covariance Theomgmwaba )

As noted above, it may be interesting to see how thbeatt@een, etavithin, between group
and withingroup correlations vary as a function of the gréexel properties of the datéhe
rg r.waba functionprovides a way to examine the grelepel properties of elements of the
covariance theoremEssentially, thegr.waba function allows one to answer questions such
as "is my etebetween value for x larger than would be expected by chande@tgr.waba
routine randomly assigns individuals into pseudo groups having the exact size characteristics as
the actual groups, and then calculates the covariance theorem parameters. By repeatedly
assigning individuals to pseudo groups andsgmatingthe covariance theorem components,
one can create sampling distributions of the covariance theorem components to see if actual
group results differ from pseudo group results (see Bliese & Halverson, 2002). Below |
illustrate the use afgr.waba . Note hat this is a very computationally intensive routine, so it
may take some time to complete. For comparative purposes, | beghestymating the
covariance theorem components using the first 1000 observations.

> TDAT<- bh1996[1:1000,c(1,8,11)]
> waba( TDAT$HRS, TDAT$SWBEING, TDAT$GRP) #Model for first 1000 obs
RawCorr EtaBX EtaBY CorrB  EtaWX  EtaWyY CorrW
1 -0.1500598 0.4136304 0.192642 - 0.6302504 0.9104449 0.9812691 -0.1117537

> RGR.WABA< rgr.waba(TDAT$HRS, TDAT$SWBEING,TDAT$GRP ,1000)
> round(summary(RGR.WABA),dig=4)
RawCorr EtaBX EtaBY CorrB EtaWX EtaWwyY CorrW
NRep 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1.00e+03 1000.0000
Mean -0.1501 0.1236 0.1241 -0.1409 0.9921 9.92e -01 -0.1501
SD 0.0000 0.0209 0.0217 0.2463 0.0026 2.80e -03 0.0040
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Thesummary of thergr.waba object produces a table giving the number of random
repetitions, the means and the standard deviations from analysis. Notice the raw coridation h
a standard deviation of zero because it does not change. In contrast, the-gebwpen
correlation has the highest standard deviation (.25) indicating that it varied across pseudo group
runs. It is apparent that all of covariance theorem comporretite actual groups significantly
vary from their counterparts in the pseudo group analysis. This is obvious because most actual
group components are close to two standard deviations different from the pseudo group means.
To test for significant differezes in this resampling design, however, one can simply look at the
sampling distribution of the random runs, and use the 2.5% and 97.5% sorted values to
approximate 95% confidence intervals. Any values outside of this range would be considered
significanty different from their pseudo group counterparts. To estimate the 95% confidence
intervals we can use tlygiantile  function.

> gquantile(RGR.WABA,c(.025,.975))

EtaBX EtaBY CorrB  EtaWX Etawy CorrW
2.5% 0.08340649 0.08288 485 -0.6048007 0.9861588 0.9857920 -0.1585368
97.5% 0.16580367 0.16797054 0.3613034 0.9965156 0.9965591 -0.1417005

Notice that all of the covariance theorem values based on the actual groups are outside of the
95% confidence interval estimates. Tlgtall of the actual group results are significantly
different than would be expected by chance (p<.05). If we estimate the 99% confidence intervals
we find that the betweegroup correlation is no longer outside of the 99% confidence interval,
but the oher values are.

> quantile(RGR.WABA,c(.005,.995))

EtaBX EtaBY CorrB  EtaWX EtaWyY CorrW
0.5% 0.07280037 0.07128845 -0.7216473 0.9843644 0.9831655 - 0.1608020
99.5% 0.17614418 0.18271719 0.4825655 0.9973465 0.9974557 -0.138 6436

Keep in mind thaa replication idikely to differ slightly fromresultspresented here because
of the random generation process underlying random group sampling.

4 Mixed-Effects Models for Multilevel Data

This section illustratethe use of mixeeeffects models to analyzaultilevel datausing the
nime package (Pinhiero & Bates, 2000). Most of the examples described in this section are
taken from Bliese (2002) and use the Bliese and Halverson (1996) ddia1€9q ) included
in the multilevel libray. Model notation is based d@ryk andRaudenbush §.992)and
Raudenbush and Bryk (2002)

A complete description ahixed-effectsmodeling is beyond the scopetbfs documertt
nonetheless, a short overview is presented to help facilitate the illusiative methosl For
more detailed discussions see Bliese, (2002); Bryk and Raudenbush, (1992); Hof@@nn, (1
Hox (2002); Kreft and De ¢euw, (1998)Pinheiro and Bates (2000audenbush and Bryk
(2002) andsnidjers and Bosker (1999).

One can think bmixed-effectsmodels as ordinary regression models that have additional
variance terms for handlingpnrindependence due goup membership. The key to
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understandingnixed-effectsmodels igo understand howesting individuals withimgroups can
produe additional sources of varian¢eonrindependenceah data

The first variance term that distinguishesixed-effectsmodel from a regression model is a
term thatreflects the degree to whigmouys differ in their mean values (intercepts) on the
dependat variable(DV). A significantvariance terngt o) indicatesthat groupsignificantly
differ in terms oftheDV. Significant grougevel variance further suggests that it may be useful
to includegrouplevel variablesas predictors Grouplevel variades(or level2 variablesyiffer
across groups, batre consistenwithin-groups. For example, a cohesion measurenhathe
same across all members of the same group would be 2Igaelblethat could potentially be
used to predict the grotpvel variance {o0) in well-being.

The second variance term that distinguishesxed-effectsmodel from typical regression
reflects the degree to whictopes between independent and dependent variaoigacross
groups t11). Singlelevel regression motkegenerally assume that the relationship between the
IV andDV is constant across groups. In contrasked-effectsmodelspermit one to test
whether bhe slope vaesamong groups If slopessignificantlyvary, one can attempt to explain
the variationas a function of group differencesgain,usinglevel2 variables such as cohesion
to explain why the slopkeetween IV and DV isome groupss stronger than the slop@sother
groups.

A third variance term is common to bathixed-effects modeland rgression models. This
variance terms?, reflects the degree to which an individual score differs from its predicted value
within a specific group. One can thinksffas an estimate of withigroup variance. One uses
individuaklevel or levell variable to predict withirgroup variances®. Levell variables
differ among members of the same group. For instance, allaxaglable such gsarticipant age
would vary among members of the same group.

In summary, in a completaixed-effect modelnalysisoneexamineg1) levell factors
related to the withirgroup variance?; (2) grouplevel factors related to the betwegroup
variation in interceptsoo; and (3) grougevel factors related to withigroup slope differences,
t11. The next sections fanalyze portions of the Bliese and Halverg®@96)data set to
illustrate a typical sequence of stepsdisemultilevel modeling.

4.1 Steps in multilevel modeling

4.1.1 Step 1 Examine the ICC for th®utcome

Because multilevel modeling involves predicting vacia at different levelst is important to
begin analyss by determining the levels at igh significant variation exist In the case of the
two-level model (the only models considdhere), one generally assumes that there is
significant variation irs > — that is, one assumes that witfgjroup variation is present. One does
not necessarily assume, however, that there will be significant intercept varigg)ar (
betweenrgroup slope variatiort {(1). Thereforepnebegirs by examining intercept vatigity
(see Bryk & Raudenbush, 1992; Hofmann, 1997}).qdtloes not differ by more than chance
levels, there may be little reason to usi@ed-effects models asmpler OLS modalwill
suffice. Note that if slopes randomly vdtyi) even if interceptst o) do not, there may still be
reason to estimataixed-effectsmodels (see Snijders & Bosker, 1999).
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In Step 1we first examinghe grouplevel properties of the outcome variabdeestimate the
ICC(1) (commonly referred to simply as the ICGnixed-effect models). Seconadve determine
whether the variance of the intercefab) is significantly larger than zero.

Thesetwo aspects of the outcome variable are examined by estimating an unconditional
means model. An unconditional means model does naticcamy predictors, but includes a
random intercept variance term for groups. This model essemsiigatesrow much
variability there is in mean Y values (i.e., how much variability there is in the intercept) relative
to the total variability. In théwo stage HLM notation, the model is:

Yij = Dot
boj = Go +Uo;

In combined form, the model istj =g + Ugj+rj. The nullmodel states that the dependent
variable is a function of a common intercegt and two error terms: the theeengroup error
term, Ug;, and the withirgroup error termi;j. The model essentially states that any Y value can
be described in terms of an overall mean plus some error associated with group membership and
some individual errorThe null modeprovidestwo estimates of variancesg associated withig;
reflecting the varianceihow much each groups’ interggpt var
ands? associated with; reflecingh ow much each individuals’ scor
mean. Bryk and Raudenbush (1992) note that this model is directly equivalent teveagne
random effects ANOVA-an ANOVA model where one predicts the dependent variable as a
function of group membership.

We estimate thanconditional means model and oth@xed-effects modelsising thdme
(for linear mixed effects) function in theme package (see Pinheiro & Bates, 2000). There are
two formulas that must be specified in dme call: a fixed effects formula and a random
effects formula.

In the unconditionlameans model, the fixed portion of the modekis(an intercept term)
and the random componentugtri;. The random portion of the model states that interagpts
vary among groups. We begin the analysis by attachingptittdevel package (whichlao
loads thenlme package) and making thd1996 data set in thenultilevel package
available for analysis.

> library(multilevel)

> data(bh1996)

> Null.Model< - Ime(WBEING~1,random=~1|GRP,data=bh1996
control=list(opt="optim") )

In the model, the fied formula iISWBEING~1indicatingthat the only predictor of webeing is

an intercept termOne can think of this model as stating that in the absence of any predictors,

the best estimate of any specific outcome value is the mean value on the oufbemandom

formula israndom=~1|GRP . The random effects formukpecifies that the intercept can vary

as a function of group membership. This is the simplest random formula that one will encounter,

and in many situations a random intercept model mayl bleadlis required to adequately

account for the nested nature of the grouped déita. option

control=list(opt="optim") inthecalltomei nstructs the program t
purpose optimization routine. Versmof Ime after 2.2 default to a défent optimizing routine.
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Thelaterroutine,nlmimb , has several advantages including better diagnostics when
optimization fails. In practice, howevelmimb tends to converge less often than the general
purpose optimization routine. Furthermore, tkaraples in this document were estimated under
"optim" , so for consistency we will revert back to the original optimizer. In practice, users
should use the defadllmimb" optimizer; however, if models fail to converge it may be
useful to revert back tboptim"

Estimating ICC The unconditional means model provides betwggenp and withirgroup
variance estimates in the formtef ands?, respectively.The formulafor theICC is too/(t o +
s?) (see, Bryk & Raudenbush, 1992; Kreft & De Leeuw, 19B8gse (2000) notes that the ICC
i's equivalent to Bartko’s I CC(1) formula
formula (Shrout & Fleiss, 1979)TheVarCorr function providesstimates of variance for an
Ime object.

> VarCorr(Null.Model)
GRP = pdSymm(1)
Variance StdDev
(Intercept) 0.03580079 0.1892110
Residual 0.78949727 0.8885366
> 0.03580079/(0.03580079+0.78949727) #Calculate ICC
[1] 0.04337922

The estimate dfqo (betweengroup or Interceptariancé is 0.036, andhe estimate of?
(within-groupor residualariancel) is 0.789. The ICC estimatgo{(too + s2)) is .04.

To verify that the ICC results from tmeixed-effects modelsire similar to those from an
ANOVA model and theCC1 function (see sectiod) we canperform an ANOVA analysis on
the same data.

> tmod< - aov(WBEING~as.factor(GRP),data=bh1996)
> |CC1(tmod)
[1] 0.04336905

The ICC value from thenixed-effectsmodel and the ICC(1) from the ANOVA model dnighly

similar although they will tend to differ if group sizes vary dramatically given that the ANOVA
models assume equal group sizes

Determining whetheryg is significant Returning to our original analysis involving well
being from thebh1996 data set, wavould likely beinterested in knowing whether the intercept
variance (i.etgo) estimate of 0.036 is significantly different from zdromixed-effects models,
we perform this test byompamg —2 log likelihood values between (1) a model with a random
intereept, and (2) a model without a random intercept.

A model without a random intercegdn beestimated using thgls function in thenime
package. The2 log likelihood valuegi.e., Deviancejor anlme or gls object are obtained
using thdogLik functionand multiplying tle returnedralue by-2. If the-2 log likelihood
value for the model wittherandom intercept is significantgmallerthan the model without the
random intercept (based on a Ghuare distribution), then one concludes that the moidel w

( Ba

the random intercept fits the data significan

intercept. In thdRk, model contrasts amnductedising theanova function.
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> Null. gls <- gls(WBEING~1,data=bh1996
control=list(opt="optim") )

> logLik  (Null. gls )* -2

“log Lik.' 19536.17 (df=2)

> logLik(Null. Model )* -2

“log Lik.' 19347.34 (df=3)

> 19536.17 -19347.34

[1] 188.83
> anova( Null.gls, Null.Model)
Modeldf AIC  BIC logLik Test L.Ratiop - value
Null.gls 1 219540.17 19 553.98 -9768.084
Null.Model 2 3 19353.34 19374.06 - 9673.669 1 vs 2 188.8303 <.0001

The-2 log likelihood value for thgls model without the random intercept is 19536.17. The
-2 log likelihood value for the model with thendom intercept is 19347.34. The difference of
188.8 is significant on a Gi8quared distribution with one degree of freedom (one model
estimated aariance term associated witliaandom intercept, the other did not, and this results in
the one df differece). These resultadicatesignificant intercept variation.

In summary, we would conclude that there is significant intercept variation in terms of general
well-being scores across the 99 Army companies in our sample. We also estimate that 4% of the
variat i on i n i rbeingecordig aflunstion ofitleelgrioup to which he or she belongs.
Thus, a model that allows for random variation in vibeling among Army companiesabetter
fit than a model that does not allow for this random variation.

4.1.2 Step 2 Explain Level 1 and 2 Intercept Variance

At this point in our example we have two sources of variation that we can attempt to explain
in subsequent modelingwithin-group variation§?) and betweemroup intercept (i.e., mean)
variation €og). In many cases, these may be the only two sources of variation we are interested in
explaining so let us begin by building a model that predicts these two sources of variation.

To make things interesting, let us assume that individuatlveatig is related tondividual
reports of work hours. We expect that individuals who report high work hours will report low
well-being. At the same time, however, let us assume that average work hours in an Army
Company are related to the average Welhg of the Compangver-andabovethe individual
level workhoursandwelb ei ng r el ati onshi p. Using Hof mann
this means that we are testing an incremental model where the leaghble predicts unique
variance after controlling for levélvariables. This is also directly equivalent to the contextual
model that we estimated in secti®d.1

The form of the model using Bryk and Raudenb

WBEING = bgj + byj(HRS)+rjj
boj = o+ B1(G.-HRS) + Uy

by = o
Let us consider each row of the notation. The first row states that individudleirdj is a
function of the groups’ i ntercept plus a comp
reports of workhow pl us some random error. The second

is a function of some common interceg@j) plus a component that reflects the linear effect of
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average group work hours plus some random betgesup error. The third line &tes that the
slope between individual work hours and waing is fixed—it is not allowed to randomly vary
across groups. Stated another way, we assume that the relationship between work hours and
well-beingvaries by no more than chance levels amgnogps.

When we combine the three rows into a single equation we get an equation that looks like a
common regression equation with an extra error tegh (This error term indicates that
WBEING intercepts (i.e., means) can randomly differ across grolips.combined model is:

WBEING = g0 + go(HRS) + 31(G.HRS) + U + 1
This model is specified ilme as:

> Model.1< - Ime(WBEING~HRS+G.HRS, random=~1|GRP,data=bh1996
control=list(opt="optim") )

> summary(Model.1)
Linear mixed - effects model fit by REML
Data: bh1996
AIC  BIC logLik
19222.28 19256.81 - 9606.14

Random effects:
Formula: ~1 | GRP
(Intercept) Residual
StdDev: 0.1163900 0.8832353

Fixed effects: WBEING ~ HRS + G.HRS

Value Std.Error DF t-valuep -value

(Intercept) 4.740829 0.21368746 7282 22.185808 <.0001
HRS - 0.046461 0.00488798 7282 - 9.505056 <.0001
G.HRS - 0.126926 0.01940357 97 - 6.541368 <.0001

Correlation:

(Intr) HRS
HRS 0.000
G.HRS -0.965 -0.2 52
Standardized Within - Group Residuals:
Min Q1 Med Q3 Max

- 3.35320562 -0.65024982 0.03760797 0.71319835 2.70917777

Number of Observations: 7382
Number of Groups: 99

Notice that work hours are significantiggatively related to individual weltleing.
Furthermore after controlling the individdalvel relationship, average work hours (G.HRS) are
related to the average w4deing in a group.The interpretation of this model, like the
interpretation of theantextual effect model (sectid@4.]) indicates that the slope at the greup
level significantly differs from the slope at the individual level. Indeed, in this example, each
hour increase at the group level is associated avith63 ¢.046+.127) decrease in average well
being. The coefficient 06127 reflects the degree of difference between the two slopes.

At this point one can also estimate how much of the variance was explained by these two
predictors. Because individuwork hours were significantly related to wb#ing, we expect
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that i1t wildl have “ egoyplvaianosé. Similagypsinee avefaget he wi t
work hours were related to the groupwele i ng i ntercept we expect th
some of intercept variancey. Recall that in the null model, the variance estimate for the

within-group residualss?, was 0.789; and the variance estimate for the intercgptyas 0.036.
TheVarCorr function on theModel.1 object reveals that elwariance component has

changed slightly.

> VarCorr(Model.1)
GRP = pdSymm(1)

Variance StdDev
(Intercept) 0.01354663 0.1163900
Residual 0.78010466 0.8832353

Specifically, the variance estimates from the model with the two predan®780 and 0.014.
That is, the variance of the withgroup residuals decreased from 0.789 to 0.780 and the
variance of the betweegroup intercepts decreased from 0.036 to 0.014. We can calculate the
percent of variance explained by using the follgyformula:

Variance Explained = 4 (Var with Predictor/Var without Predictor)

To follow through with our example, work hours explained(0.780/0.789) or 0.011 (1%)
of the withingroup variance is?, and grougmean work hours explained-1(0.014/0036) or
0.611 (61%) of the betweearoup intercept variandgo. While the logic behind variance
estimates appears pretty straightforward (at least in models without random slopes), the variance
estimates should be treated with some degree of cautiondeciteey are partially dependent
upon how one specifies the models. Interested readers are directed to Snijders and Bosker (1994;
1999) for an irdepth discussion of variance estimates.

4.1.3 Step 3 Examine and Predict Slope Variance

Let us continue our ahgsis by trying to explain the third source of variation, namely,
variation in our sloped (3, t1,, etc.). To do thisyye examine another variable fronin1996 .
This variable represents Army Company members
Generallyi ndi vi dual sol di ers’ r at-bemg dnthisfanalyses,ader s hi
however, we will consider the possibility that the strength of the relationship between individual
ratings of leadership consideration and virding varieamong groups.

We begin by examining slope variation among the first 25 groups. Visually we can do this
usingxyplot from thelattice package.

> library(lattice)

> xyplot(WBEING~LEAD|as.factor(GRP),data=bh1996[1:1582,],
type=c("p","g","r"),col="dark blu e",col.line="black",
xlab="Leadership Consideration",
ylab="Well - Being")
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From the plot of the first 25 groups in thB1996 data set, it seems likely that there is some
slope variation. The plot, however, does not tell us whether or not thisomigsignificant.
Thus, the first thing to do is to determine whether the slope variation differs by more than chance
levels.

Is slope variation significant®e begin our formal analysis of slope variability by adding
leadership consideration to our nebdnd testing whether or not there is significant variation in
the leadership consideration and wming slopes across groups. The model that we test is:

WBE|NG, = boj + blj(HRSQ)'F sz(LEADj) + I

boj = go+ @1(G-HRS) + Uy

by = dio

by = go+ Uy

The last line of the model includes the error tepmn This term indicates that the leadership

consideration and webeing slope is permitted to randomly vary acrgesips. The variance
term associated witty; is 1. It is this variance term that interests us in the el@ss
interaction hypothesis. Note that we have not permitted the slope between individual work hours
and individual weHbeing to randomly varacross groups.

In combined form the model iISWBEING = g0 + gdo(HRS) + @o(LEAD;) + 31(G.HRS) +
Ug + Uy * LEAD; + 1. In R this model is designated as:
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> Model.2< - Ime(WBEING~HRS+LEAD+G.HRS,random=~LEAD|GRP, data=bh1996
control=list(op t="optim") )
> summary(Model.2)
Linear mixed - effects model fit by REML
Data: bh1996
AIC  BIC logLik
17838.58 17893.83 -8911.29

Random effects:
Formula: ~LEAD | GRP
Structure: General positive - definite, Log - Cholesky parametrization
StdDev Corr
(Intercept) 0.3794891 (Intr)
LEAD 0.1021935 -0.97
Residual 0.8008079

Fixed effects: WBEING ~ HRS + LEAD + G.HRS

Value Std.Error DF t -value p -value
(Intercept) 2.4631348 0.20832607 7281 11.82 3459 <.0001
HRS - 0.0284776 0.00446795 7281 - 6.373764 <.0001
LEAD 0.4946550 0.01680846 7281 29.428928 <.0001
G.HRS - 0.0705047 0.01789284 97 -3.940387 2e -04

Number of Observations: 7382
Number of Groups: 99

In line with ou expectations, leadership consideration is significantly related tebeield).
What we are interested in from this model, however, is whethehe slope between leadership
consideration and webeing significantly varies across groups. determinavhether the slope
is significant, we test the2 log likelihood ratios between a model with and a model without a
random slope for leadership consideration and-beihg.We have already estimated a model
with a random slope. To estimate a model wittotandom slope we usgpdate on
Model.2 and change the random statement so thoatly includes a random intercept.

> Model.2a< - update(Model.2,random=~1|GRP)
> anova(Model.2  a,Model.2 )

Model df  AIC  BIC logLik Test L.Ratio p - value
Model.2a 1 617862.68 17904.12 - 8925.341
Model.2 2 817838.58 17893.83 -8911.290 1 vs 2 28.10254 <.0001

The difference of 28.10 is significant twio degrees of freedonmlhere are two degrees of

freedom because the o with the random slope also estimates a covariance term for the slope
intercept relationship. The& log likelihood results indicatde model with the random effect for

the leadership consideration and wming slopegrovides asignificantly bettefit than the

model withaut this random effect therelaydicaing significant slope variaility .

Given thesignificant variation in the leadership and wading slope, we can attempt to see
what grouplevel properties are related to this variation. s gample, we hypothesize that
when groups are under a lot of strain from work requirements, the relationship between
leadership consideration and wb#ing will be relatively strong. In contrast, when groups are
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under little strain, we expect a relatiyeveak relationship between leadership consideration and
well-being. We expect these relationships because we believe that leadership is relatively
unimportant in terms of individual welleing when groups are under little stress, but that the
importanceof leadership consideration increases when groups are under high stress. We are, in
essence, proposing a contextual effect in an occupational stress model (see Bliese & Jex, 2002).

A proposition such as the one that we presented in the previous pansgragsents a cross
level interaction. Specifically, it proposes that the slope between leadership consideration and
well-being within groups varies as a function of a |e¥e&friable, namely group work demands.
In mixed-effectsmodek, we test this hypthesis by examining whether a lexzVariable
explains a significant amount of the lexeslope variation among groups. In our example, we
will specifically be testing whet hehygreup er age
variation in the riationship between leadership consideration and-latig. In Bryk and
Raudenbush’”s (1992) notation, the model that

WBE|NG, = boj + b1j(HR$)+ sz(LEADj) + 1
bo = go+ 31(G.HRS) + Ug;
b1 = do
baj = o +21(G.HRS) + Uy
In combined form the model is:
WBEING = g0 + go(HRS) + @o(LEAD;) + 31(G.HRS) + @1(LEAD; * G.HRS) + ugj + Uy,
*LEADij + fij.

In Ime we specify the croskevel interaction by adding an inteten term between
leadership (LEAD) and average group work hours (G.HRS). Specifically, the model is:

> Final.Model< - Ime(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS,

random=~LEAD|GRP,data=bh1996 ,control=list(opt="optim") )
> round(summary(Final.Model)$tTable,dig=3)

Value Std.Error DF t -value p -value
(Intercept) 3.654 0.726 7280 5.032 0.000
HRS -0.029 0.004 7280 -6.391 0.000
LEAD 0.126 0.217 7280 0.578 0.564
G.HRS -0.175 0.064 97 -2.751 0.007

LEAD:G.HRS 0.032 0.019 7280 1.703 0.089

ThetTable results from the final model indicate there is a significant elss interaction
(the last row using a liberahyalue of less than .10). This result indicates that average work
hours “ex®l aigpreidf i cant poe+theivestical colfesion&andwell ar i at i ¢
being slope.

We can examine the form of our interaction by predicting four peihtgh and low group
work hours and high and low leadership consideration. We start loyisghealues for G.HRS
and LEAD that are one standard deviation above the mean and one standard deviation below the
mean. By using the Group Work Hours variable in the original data set, we have means and
standard deviation values weighted by group size.
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> mean(bh1996$G.HRS)
[1] 11.2987

> sd(bh1996$G.HRS)

[1] 0.8608297

>11.30 -.86;11.30+.86
[1] 10.44

[1] 12.16

> mean(bh1996$LEAD)
[1] 2.890665

> sd(bh1996$LEAD)

[1] 0.771938

>2.89 -.77;2.89+.77
[1] 2.12

[1] 3.66

Once we have the high and low values weate a small data set (TDAT) with high and low
values for the interactive variables, and mean values for thenteractive variables (individual
work hours in this case). We then usepheddict  function to get estimates of the outcome
given the valuesf the variables.

> TDAT< - data.frame(HRS=c(11.2987,11.2987,11.2987,11.2987),
LEAD=c(2.12,2.12,3.66,3.66),
G.HRS=c(10.44, 12.16, 10.44, 12.16),
GRP=c(1,1,1,1))

> predict(Final.Model, TDAT level=1)
1 1 1 1
2.380610 2.198103 3.217337 3.120810

The predicted values in this case are specifically for GRP 1. Each group in the sample will
have different predicted values because the slopes and intercepts randomly vary among groups.
In many cases, one will not be specifically interested in the predicted values for specific groups,
but interested in the patterns for the sample as a whole. If one is interested in estimating overall
values, one can change the level of predictidevel= 0.

> predict(Final.Model, TDAT level=0)

[1] 2.489508 2.307001 3.204766 3.108239
attr(,"label™)

[1] "Predicted values"

Notice that the values for the sample as a whole differ from those for GRReh. the
samplebasedvalues are plotted, the form of th@eraction supports our proposition; however,
to better illustrate theffect the figure usesalues of 7 and 12 to represent low and high average
work hours. Note this plot was generated in PowerPoint.

> TDAT<- data.frame(HRS=c(11.2987,11.2987,11.2987,1 1.2987),
LEAD=c(2.12,2.12,3.66,3.66),
G.HRS=c(7, 12, 7, 12),
GRP=c(1,1,1,1))

> predict(Final.Model, TDAT ,level=0)

[1] 2.854523 2.323978 3.397820 3.117218
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attr(,"label™)
[1] "Predicted values"

—a— 12 Hours (group average) —&— 7 Hours (group average)
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Solder s’ perceptions of | eadership cheimgsi der at i
regardless of the number of hours that the group, on average, works; however, the relationship
between leadership consideration and seeihg is stronger (steeper sépn groups with high
work hours than in groups with low work hours. Another way to think about the interaction is to
note that welbeing really drops (in relative terms) when one perceives that leadership is low in
consideratiorandone is a member @ group with high work hours. This supports our
proposition that considerate leadership is relatively more important in a high work demand
context.

Il n this model one can al so estimate how much

the group wdk hours. The estimate of the between group slope variesce) the model with
a random slope for the relationship between leadership andbeieti (Model.2) is 0.0104.

> VarCorr(Model.2)
GRP = pdLogChol(LEAD)

Variance StdDev Corr
(Intercept) 0.14401197 0.3794891 (Intr)
LEAD 0.01044352 0.1021935 -0.97
Residual 0.64129330 0.8008079

The esti mate after average work hours has “e
(Final.Model) is 0.0095.

> VarCorr(Final.Model)
GRP = pdLog Chol(LEAD)
Variance StdDev  Corr
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(Intercept) 0.131260632 0.36229909 (Intr)
LEAD  0.009545556 0.09770136 -0.965
Residual 0.641404947 0.80087761

Thus, average group work hours accounts fe(@.0095/0.0104) or 8.6% of tistope
variance. Once again, | emphasize that this is a rough estimate, and | direct readers to Snijders
and Bosker (1994; 1999) for additional information on estimating effect sizes.

4.2 Plotting an interaction with interaction.plot

The previous example shod/éhe form of the interaction plot by exporting predicted values
into PowerPoint. In many cases, however, users may simply want a way to quickly examine the
form a tweway interaction within R. This task can be accomplished using the
interaction.plot functionillustrated below

> Final.Model< - Ime(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS,
random=~LEAD|GRP,data=bh1996,control=list(opt="optim™))

> TDAT<- data.frame(HRS=c(11.2987,11.2987,11.2987,11.2987),
LEAD=c(2.12,2.12,3.66,3.66),
G.HRS=c(7, 12, 7, 12),
GRP=c(1,1,1,1))

> TDATSWBEING< predict(Final.Model, TDAT level=1)
> with(TDAT,interaction.plot(LEAD,G.HRS,WBEING))

mean of WEEING

LEAD

4.3 Some Notes on Centering

In multilevel modeling, one will eventually have to contevith centering issues. In our
examples, we have used raw, untransformed variables as predictors. In some cases, though,
there may be good reasons to consider centering the variables. Basically, there are two centering
options with levell variables.
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Level-1 variables such as leadership can be graaedn centered or groupean centered.
Grandmean centering is often worth considering because doing so helps reduce multicollinearity
among predictors and random effect terms. In cases where interaghgeaterincluded, grand
mean centering can be particularly helpful in reducing correlations betweeseffeinand
interactive terms. Hofmann and Gavin (1998) and others have shown thahggandentered
and raw variable models are basically identibalyever, grangnean centered modeisay
converge in situations where a model based on raw variables will not.

Grandmean centering can be accomplished in one of two ways. The explicit way is to
subtract the overall mean from the raw variable. The leg®os way is to use thecale
function. Thescale function is typically used to standardize (mean=0, sd=1) variables, but can
also be used to grandean center. Below | create grameéan centered variables for leadership
both ways.

> bh1996$GRAND.CENT. LEAD< bh1996$LEAD- mean(bh1996$LEAD)
> bh1996$GRAND.CENT.LEAD< - scale(bh1996$LEAD,scale=F )

In the first example a singlealue(the mean of leadership) is recycled and subtracted from
each element in the vector of leadership scores to create a new vanabile second example,
the use ofhe optionscale=F instructsscale to provide a grandgnean centered variable.

Groupmean centering is another centering option with ldveriables. In groumean
centering, one subtracts the group mean from eachidiidivscore. The new variable reflects
how much an individual differs from his or her group average. It is important to keep in mind
that groupmean centering represents a completely different parameterization of the model than
does the raw or grantieancentered version (Hofmann & Gavin, 1998; Hox, 2002; Snijders &
Bosker, 1999). Most authors recommend that one use-gneap centeringnly if there is a
strong theoretical reason to believe that a respondent's relative position within the group is more
important than the absolute rating (Hox, 2002; Snijders & Bosker, 1999). For instance, one
might use groupnean centering if one believed that the key predictive aspect of work hours was
whether an individual worked more or less than his or her group aremb

There may also be value in using graupan centering when testing a crm#el interaction.
Bryk and Raudenbush (1992) addfmann and Gavin (199¢)pint outthat groupmean
centeringpr ovi des t he “ pur egdupslogesntthesataatians. dhatiss he wi t
slope estimates based on raw variables and greeah centered variables can be partially
influenced by betweegroup factors. In contrast, grompean centered variables have between
group effects removed. Bryk and Raudenbush (1988w that groueevel interactions can
sometimes pose as crdssel interactions, so a logical strategy is to use raw or gragah
centered variables to test for crdssel interactions, but verify the final results with grempan
centered variables.

Groupmean centered variables are created by subtracting the igreap from the raw
variable. Thusthey are identical to the withigroup scores calculated in WABA (see section
3.5.1). To create groumean centered varialsléen R, one needs two columns in the dataframe
the raw variable and the grompean. In sectio.2theaggregate andmerge functions
were illustrated as ways of creating a grongan variable (viaggregate ) and merging the
group means back with the raw data (wviarge ). Below these functions are used to help create
a groupcentered leadership variable.
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> TDAT<- bh1996[,c("GRP","LEAD")]

> TEMP<- aggregate(TDAT$LEAD,list(TDAT$GRP),mean)

> names(TEMP)< - c("GRP","G.LEAD")

> TDAT<- merge(TDAT, TEMP,by="GRP")

> names(TDAT)

[1] "GRP" “"LEAD" "G.LEAD"

> TDAT$GRP.CENT.LEAD<- TDAT$SLEAD TDAT$G.LEAD

> names(TDAT)

[1] "GRP" "LEAD" "G.LEAD" "GRP.CENT.LEAD"

One would typically choose a shorter name for the graapn centered variables, but this
name was chosen to be explicit.

Thebh1996 dataframe has groumpean centered variables for all the predictors. The group
mean centered variables begin with a "W" for "witgimoup". For comparison, the model below
uses lhe groupmean centered leadership variable in lieu of the raw leadership variable used in
the final model in the preceding section.

> Final.Model< - Ime(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS,

random=~LEAD|GRP,data=bh1996 , control=list(opt="optim") )
> Final.Mod el.R< - Ime(WBEING~HRS+W.LEAD+G.HRS+W.LEAD:G.HRS,

random=~LEAD|GRP,data=bh1996 , control=list(opt="optim") )
> round(summary(Final.Model.R)$tTable,dig=3)

Value Std.Error DF t -value p -value

(Intercept) 4.705 0.211 7280 22.250 0.000
HRS -0.028 0.004 7280 - 6.264 0.000
W.LEAD 0.044 0.222 7280 0.197 0.844
G.HRS -0.142 0.019 97 -7.421 0.000

W.LEAD:G.HRS 0.040 0.019 7280 2.064 0.039

Notice that the crostevel interaction is now signdant with a tvalue of 2.064. In contrast,
recall that the croskevel interaction in the model with the noantered leadership variable had a
t-value of 1.703 (p<.10). Thus, there are some minor differences between the two model
specifications.

4.4 Estimating Group-Mean Reliability (ICC2) with GmeanRel

In mixed-effects models, one can also obtain an estimate of the-gneap reliability
analogous to the ICC(Z¥ee sectio.3.7. As a gener al deteateragentone’ s
phenomenaepends upon having reliable group me@igse 1998). By convention, estimates
around .70 are considered reliable. Group mean reliability estimates are a function of the ICC
and group size (see Bliese, 2000; Bryk & Raudenbush, 19%@®GmeanRel function from
the multilevel package calculates the ICC, the group size, and the group mean reliability for each

group.
The code below illustrates tliameanRel functionon thebhr2000 data set to show how

the results compare to results in see8.3.7where the ICC(1) estimate from the ANOVA
model was 0.174 and the ICC(2) estimate was 0.920.

> Null.Model< - Ime(HRS~1,random=~1|GRP,data=bhr2000,
control=list(opt="optim"))

a
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> GREL.DAT< - GmeanRel(Null.Model)
> names(GRE L.DAT)
[1]"ICC"  "Group" "GrpSize" "MeanRel"

> GREL.DATS$ICC #ICC estimate
[1] 0.177544

> GREL.DAT$MeanRel[1:20] #First 20 Reliability Estimates

[1] 0.9272005 0.9066657 0.9471382 0.8487743 0.9465280

[6] 0.7754791 0.7953197 0.8192754 0.8699945 0.8 831157
[11] 0.8119385 0.8622636 0.9379303 0.9452644 0.9260382
[16] 0.8487743 0.9395503 0.9315061 0.8622636 0.9235985

> mean(GREL.DAT$MeanRel)
[1] 0.8955047

ThelCC estimate is 0.178 (the same as the value producedilbycc  in section3.3.9
and slightly higher than the ANOVA based estimate of 0.174. The averagergsaup
reliability from GmeanRel is 0.896 which is smaller (but close) to the value of 0.920 from the
ANOVA model. The output also illustrates that each grageives a separate estimate of group
mean reliability Values vary as a function of group size.

5 Growth Modeling Repeated Measures Data

Growth models aran importanvariation of multilevel models (see sectidn In growth
modek repeated observations from an individual represent the levatiables, and the
attributes of the individual represent the leRelariablesThe fact that the level variables are
repeated over time poses some additional anaggies however, the steps used to analyze the
basic growth model and the steps used to analyze a multilevel model share many key similarities.

This chaptebegins bybriefly reviewing some of the methodological challenges associated
with growth modeling. Fotiwing this,the chapteillustrates how data must be configured in
order to conduct growth modeling. Finaltiie chapteillustratesa complete growth modeling
analysis using thelme package. Much of this materialaslaptedrom Bliese and Ployhart
(20@).

5.1 Methodological challenges

In general, the methodological challenges associated with longitudinal analyses of any kind
can be daunting. For instance, since longitudinal data is collected from single entities (usually
persons) over multiple times, itligely that there will be some degree of Aimkependence in
the responses. Multiple responses from an individual will tend to be related by virtue of being
provided by the same person, and this-matependence violates the statistical assumption of
independence underlying many common data analytic techniques (Kenny & Judd, 1986). The
issue of norindependence should be familiar to individuals who have workednegted group
datasince norindependence due to group membership is key characteristicloevel
models. That is, multilevel models are fundamentally about modeling thimaependence that
occurs when individual responses are affected by group membership.
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In longitudinal designs, however, there are additional complications associdtetenievel
1 responses. First, it is likely that responses temporally close to each other (e.g., responses 1 and
2) will be more strongly related than responses temporally far apart (e.g., responses 1 and 4).
This pattern is defined as a simplex patwriag 1 autocorrelation. Second, it is likely that
responses will tend to become either more variable over time or less variable over time. For
instance, individuals starting jobs may initially havew degree of variability in performance,
but overtime the variance in job performance magrease In statistical terms, outcome
variables in longitudinal data are likely to display heteroscedasticity. To obtain correct standard
errors and to draw the correct statistical inferences, autocorrelatidresardscedasticity both
need to be incorporated into the statistical model.

The need to test for both autocorrelation and heteroscedasticity in growth models arises
because the levdl variables (repeated measures from an individual) are ordered byQimee.
of the main difference between growth models and multilevel models revolves around
understanding how to properly account for time in both the statistical models and in the data
structures.

In R, growth modeling is conducted usitgtme function fromthe nime package (Pinhiero
& Bates, 2000). Talme function is he same function used in multilevel modeling (see section
4); however, thanlme package has a wide variety of options available for handling
autocorrelation and hetescedasticity in growth models.

Prior to conducting growth modeling, one has to create a data set that explicitly includes time
as a variable. This data transformation is referred to as changing a data set from multivariate to
univariate form. In the nésection, we show how to create a dataframe for growth modeling.

5.2 Data Structure and the make.univ Function

The first step in conducting a growth modeling analysis isattsforma data seinto a
univariate form (al so r toimatyOftendlataéarestoracsinaa “ st ac k
format where each row represents observations from one individual. For instance, an individual
might provide three measures of job satisfaction in a longitudinal study, and the data might be
arrangedn multivariate fom such that column 1 is the subject number; column 2 is job
satisfaction at time 1; column 3 is job satisfaction at time 2, and column 4 is job satisfaction at
time 3, etc.

Theunivbct dataframe in the multilevel library allows us to illustrateommon &y of
storing repeated measures ddtais data set contains three measures takemaikhs apart on
three variables job satisfaction, commitment, and readiness. It also contains some stable
individual characteristics such as respondent gender, nstatak and age at the initial data
collection time. These latter variables are treated asfepstdictors in subsequent modeling.

Theunivbct dataframas alreadyin univariate form; however, for the purposes of
illustration, we will select a subsettthe entireunivbct  dataframe and transform it back into
multivariate form. With this subset we will illustrate how to convert a typical multivariate
dataframéback into the univariate formecessary for growth modeling.

> library(multilevel)
> data(univ  bct)
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> names(univbct)
[1]"BTN" "COMPANY" "MARITAL" "GENDER" "HOWLONG" "RANK" "EDUCATE"
[8] "AGE" "JOBSAT1""COMMIT1" "READY1" "JOBSAT2" "COMMIT2" "READY2"
[15] "JOBSAT3" "COMMIT3" "READY3" "TIME" "JSAT" "COMMIT" "READY"
[22]"SUB NUM"
> nrow(univbct)
[1] 1485

> length(unique(univbct$SUBNUM))
[1] 495

These commandadicatethere are 185 rows in the data se¢presentingt95 individuals.
Thus each individual provides three rows of data. To create a multivariate data seheut of t
univbct dataframe, we can seleabe firstrow for each participant itheunivbct  dataframe.
In this illustration we restrict our analyses to the three job satisfaction scores and to respondent
age at the initial data collection period.

> GROWDAT<univbct] !duplicated(univbct$SUBNUM) ,¢(22,8,9,12,15)]
> GROWDAT[1:3)]
SUBNUM AGE JOBSAT1 JOBSAT2 JOBSAT3
1 1 201.666667 1 3
4 2 243.666667 4 4
7 3 24 4.000000 4 4

The datafram&ROWDAow containglata from 495 individuals. The first individual was
20 years old at the first data collection tim
score was 1.67; at time 2 it was 1.0, and at time 3 it was 3.0.

Because thanivbct dataframe in the aitilevel packagavas already in univariate form
we illustratedthe additional stepsf converting it back to multivariate forrkrom a practical
standpointthough the important issue is that tROWDAdataframenow represents a typical
multivariate dta set containing repeated measures. SpecificallgR@WDAdataframe
contains one row of information for each subject, and the repeated measures (job satisfaction) are
represented by three different variables.

From a growth modeling perspective, theylproblem with multivariate dataframes like
GROWDAF that they do not contain a variable that indexes time. That is, we know time is an
attribute of this data because we have three different measures of job satisfaction; however,
analytically we have nway of explicitly modeling timen the multivariate form of the data
Therefore it is critical to create a new variable that explicitly indexes twvh&h requires
transforming the data to univariate or a stacked format.

Themake.univ function from themultilevel package provides a simple way to perform this
transformation. Two arguments are require@fddvs ), and two are optionat{ame and
outname ). The first required argument is the dataframe in multivariate or wide format. The
second requiredrgument is a subset of the entire dataframe identifying the columns containing
the repeated measures. The second required argument must-bertede column 1 must be
time 1, column 2 must be time 2, and so on. The two optional arguments contratés of
the two created variablesname defaults to "TIME" ancdutname defaults to "MULTDV".

For instance, to conveBROWNDAIRto univariate form we issue the following command:
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> UNIV.GROW< make.univ(GROWDAT,GROWDAT],3:5])
> UNIV.GROW[1:9,]
SUBNUM AGE JOBSAT1 JOBSAT2 JOBSAT3 TIME MULTDV
1 1201666667 1 3 01.666667
1.1 1 20 1.666667 3 1 1.000000
1.2 1 201.666667 3 23.000000

1
1
4 2 243666667 4 4 03. 666667
41 2 243666667 4 4 14.000000
42 2 243666667 4 4 2 4.000000
7 3 244.000000 4 4 04.000000
7.1 3 244000000 4 4 14.000000
7.2 3 244.000000 4 4 2 4.000000
Note that each individual now has three rows

ranges from 0 to 2. To facilitate model interpretation, the first time is coded as 0 instead of as 1.
Doing so allows one to interpret threerceptin subsequent modeds the level of job

satisfaction at the initial data collection time. Second, notice that&ke.univ  function has
created a variable called “MULTDV”. This var
variable. Thevarabl e “ TI ME” and the variable “MULTDV”
used in growth modeling. Finally, notice that AGE, SUBNUM and the values for the three job
satisfaction variables were repeated three times for each individual. By repeatingwideahdi

variables, thenake.univ function has essentially created a dataframe with-{2wariables in

the proper format. For instance, subject age can now be used aszapesictor in subsequent
modeling.

In many cases, one may have only one depengeiable that needs to be converted into
univariate or stacked format and thereforerttake.univ  function will suffice. If, however, it
IS necessary to create a univariate dataframe with multiple variables indexed by time, the
mult.make.univ functionin themultilevel package is available (see help files).

5.3 Growth Modeling Illustration

With the data in univariate form, we can begin to visually examine whether or not we see
patterns between time and the outcome. For instance, the commands belowaiseethe
package to produce a plot of the first 30 individuals:

>library(lattice)
>xyplot(MULTDV~TIME|as.factor(SUBNUM),data=UNIV.GROW][1:90,],
type=c("p","r","g"),col="blue",col.line="black",
xlab="Time",ylab="Job Satisfaction")
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From this plot, it appars as though there is considerable variability both in overall levels of
job satisfaction and in how job satisfaction changes over time. The goal in growth modeling is to
determine whether or not we can find consistent patterns in the relationshieté&itwe and job
satisfaction. Tarefore we are now ready to illustrate growth modeling in a-bieptep
approach. In this illustration, we follow the model comparison approach outlined by Bliese and
Ployhart (2002) and in also discussedlayhart, Hdtz and Bliese (2002).

As an overview of the steps, the basic procedure is to start by examining the nature of the
outcome. Much as we did in multilevel modeling, we are interested in estimating the ICC and
determining whether the outcome (job satisfagtimndomly varies among individuals. Second,
we are interested in examining the form of the relationship between time and the outcome.
Basically, we want to know whether the outcome generally increases, decreases, or shows some
other type of relationspiwith time. The plot of the first 30 individuals shows no clear pattern in
how job satisfaction is changing over time, but the analysis might identify an overall trend
among the 495 respondents. Third, we attempt to determine whether the relatiotvetgm be
time and the outcome is constant among individuals or whether it varies on an indidual
individual basis. Fourth, we model in more complicated error structures such as autocorrelation,
and finally we add leve? predictors of intercept and slopariances.
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5.3.1 Step 1: Examine the DV

The first step in growth modeling is to examine the properties of the dependent variable. As
in multilevel modeling, one begins by estimating a null model and calculating the ICC.

> null.model< - Ime(MULTDV~1,random=~1 |SUBNUM,data=UNIV.GROW,
na.action=na.omit , control=list(opt="optim") )

> VarCorr(null.model)

SUBNUM = pdLogChol(1)
Variance StdDev

(Intercept) 0.4337729 0.6586144

Residual 0.4319055 0.6571952

> 0.4337729/(0.4337729+0.4319055)
[1]0.501 0786

In our example using the UNIV.GROW dataframe, the ICC associated with job satisfaction is
.50. This indicates that 50% of the variance in any individual report of job satisfaction can be
explained by the properties of the individual who provideddhieg. Another way to think
about this is to note that individuals tend to remain fairly constant in ratings over time, and that
there are differences among individuals. This observation is reflected in the graph of the first 30
respondents.

5.3.2 Step 2:Model Time

Step two involves modeling the fixed relationship between time and the dependent variable.
In almost all cases, one will begin by modeling a linear relationship and progressively add more
complicated relationships such as quadratic, cubic,Teidest whether there is a linear
relationship between time and job satisfaction, we regress job satisfaction on time in a model
with a random intercept.

> model.2< - Ime(MULTDV~TIME,random=~1|SUBNUM,data=UNIV.GROW,

na.action=na.omit ,control=list(opt="opt im") )
> summary(model.2)$tTable
Value Std.Error DF t -value p - value

(Intercept) 3.21886617 0.04075699 903 78.977040 0.00000000
TIME 0.05176461 0.02168024 903 2.387640 0.01716169

An examination of the fixed effects indicatést there is a significant linear relationship
between time and job satisfaction such that job satisfaction increases by .05 each time period.
Note that since the first time period was coded as 0, the intercept value in this model represents
the averagéevel of job satisfaction at the first time period. Specifically, at the first time period
the average job satisfaction was 3.22.

More complicated time functions can be included in one of two wayther through raising
the time variable to various poveg or by converting time into power polynomials. Below both
techniques are illustrated.

> model.2b< - Ime(MULTDV~TIME+I(TIME*2),random=~1|SUBNUM,
data=UNIV.GROW,na.action=na.omit ,control=list(opt="optim") )

> summary(model.2b)$tTable
Val ue Std.Error DF t -value p -value
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(Intercept) 3.23308157 0.04262697 902 75.8459120 0.0000000
TIME - 0.03373846 0.07816572 902 - 0.4316273 0.6661154
I(TIME~2) 0.04276425 0.03756137 902 1.1385167 0.2552071

> model.2c< - Ime(MULTDV~poly(TIME,?2), random=~1|SUBNUM,

data=UNIV.GROW,na.action=na.omit ,control=list(opt="optim") )
> summary(model.2c)$tTable

Value Std.Error DF t -value p - value
(Intercept) 3.2704416 0.0346156 902 94.478836 0.00000000
poly(TIME, 2)1 1.5778835 0.6613 714 902 2.385775 0.01724863

poly(TIME, 2)2 0.7530736 0.6614515 902 1.138517 0.25520707

Both models clearly show that there is no significant quadratic trend. Note that a key
advantage of the power polynomials is that the linear and quadratic effecishedgonal. Thus,
in the second model the linear effect of time is still significant even with the quadratic effect in
the model. In either case, however, we conclude that time only has a linear relationship with job
satisfaction.

5.3.3 Step 3: Model Slop¥ariability

A potential limitation with model 2 is that it assumes that the relationship between time and
job satisfaction is constant for all individuals. Specifically, it assumes that each individual
increases job satisfaction by .05 points at each pariod. An alternative modislone that
allows slopes to randomly vary. Given the degree of variability in the graph of the first 30
respondents, a random slope model seems quite plausible with the current data. The random
slope model is tested byding the linear effect for time as a random effect. In the running
example, we can simplypdate model.2 by adding a different random effect component and
contrast model 2 and model 3.

> model.3< - update(model.2,random=~TIME|SUBNUM)

> anova(model.2,model .3)

Model df AIC  BIC logLik Test L.Ratiop - value
model.2 1 4 3461.234 3482.194 -1726.617
model.3 2 6 3434.132 3465.571 -1711.066 1 vs 2 31.10262 <.0001

The results clearly indicate that a model thilows the slope between time and job
satisfaction to randomly vary fits the data better than a model that fixes the slope to a constant
value for all individuals.

In cases where highégvel trends were also significant, one would also be interested in
determining whether allowing the slopes of the higbeel variables to randomly vary also
improved model fit. For instance, one might find that a quadratic relationship varied in strength
among individuals.

5.3.4 Step 4: Modeling Error Structures

The fourh step in developing the lev&lmodel involves assessing the error structure of the
model. Itis important to carefully scrutinize the letedrror structure because significance tests
may be dramatically affected if error structures are not propeelyifsgd. The goal of step 4 is
to determine whether one’s model fit i mproves
with serial correlations and (b) heterogeneity in the error structures.
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Tests for autoregressive structure (autocorrelationg@rducted by including the
correlation option inlme . For instance, we can update model.3 and include lag 1
autocorrelation as follows:

> model.4a< - update(model.3,correlation=corAR1())
> anova(model.3,model.4a)

Model df AIC  BIC logL ik Test L.Ratio p - value
model.3 1 6 3434.132 3465.571 -1711.066
model.4a 2 7 3429.771 3466.451 -1707.886 1 vs 2 6.360465 0.0117

A model that allows for autocorrelation fits the data better than does a model tha¢sassum
autocorrelation. A summary of model 4a reveals that the autocorrelation estimate is .367 (see the
Phi coefficient).

> summary(model.4a)
Linear mixed - effects model fit by REML

Data: UNIV.GROW

AIC  BIC logLik
3429.771 3466.451 - 1707 .886

Correlation Structure: AR(1)

Formula: ~1 | SUBNUM

Parameter estimate(s):

Phi

0.3676831

It is important to note that the useaafrrelation=corAR1() in the default mode
assumes data is structurgath that time increases for each imdinal. Stacked data created
usingmake.univ has this structure. If data are imported or otherwise manipulated so that this
order is not maintained, it will be necessary either forder the dataframe or to specify the
structure tacorAR1() with more déail (see help files). For example, if the rows in
GROW.UNIV are randomly ordered, the estimate for AR 1 changes:

> UNIV.GROW2<- UNIV.GROW]/order(rnorm(1485)),]
> UNIV.GROW2[1:10,]
SUBNUM AGE JOBSAT1 JOBSAT2 JOBSAT3 TIME MULTDV
6 22 4 3.666667 4.000000 4.000000 0 3.666667
285.2 93 20 2.333333 3.000000 3.000000 2 3.000000
339.2 109 33 3.666667 3.000000 3.333333 2 3.333333
228 74 23 5.000000 NA 5.000000 0 5.000000
894 294 37 4.000000 4.000000 4.000000 0 4.000000
1029.1 339 20 3.000000 3.333333 3.000000 1 3.333333
1416 468 20 3.333333 3.333333 3.666667 0 3.333333
696.2 228 19 4.000000 2.666667 3.333333 2 3.333333
735.1 241 25 3.666667 3.000000 3.000000 1 3.0000 00
51 17 20 3.666667 3.000000 3.000000 0 3.666667

> tmod< - Ime(MULTDV~TIME,random=~1|TIME,na.action=na.omit,
data=UNIV.GROW2,corAR1())

> summary(tmod)
Linear mixed - effects model fit by REML
Data: UNIV.GROW2
AIC  BIC logLik
3766.914 3793.113 -1878.457
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Correlation Structure: AR(1)
Formula: ~1 | TIME
Parameter estimate(s):

Phi

0.05763463

Notice how the estimate ttie phicoefficient has changed (replications will result in different
estimates of the pldoefficient because of different structures associated with the random sorting
of the data).To ensure the data is in the proper structure, userttee function as followson
any dataframe that is improperly structured

> UNIV.GROW3<- UNIV.GROW?2[order(UNIV.GROW2 $SUBNUM,UNIV.GROW2S$TIME),]
> UNIV.GROW3[1:10,]
SUBNUM AGE JOBSAT1 JOBSAT2 JOBSAT3 TIME MULTDV
3 1 201.666667 1.000000 3 0 1.666667
3.1 1 201.666667 1.000000 3 1 1.000000
3.2 1 201.666667 1.000000 3 2 3.000000
6 2 243.666667 4.000000 4 0 3.666667
6.1 2 243.666667 4.000000 4 1 4.000000
6.2 2 243.666667 4.000000 4 2 4.000000
9 3 244.000000 4.000000 4 0 4.000000
9.1 3 244.000000 4 .000000 4 1 4.000000
9.2 3 244.000000 4.000000 4 2 4.000000
12 4 233.3333333.666667 3 0 3.333333

Finally, we can examine the degree to which the variance of the responses changes over time.
A simple preliminarytest of variance homogeneity can be conducted by examining the variance
of job satisfaction at each time point using tidygply command.

> tapply(UNIV.GROWS$MULTDV,UNIV.GROWSTIME,var,na.rm=T)
0 1 2
0.9681912 0.8831397 0.7313358

Theanalysis suggests the variance of job satisfaction is decreasing over time. To model
decreasing variance one can usevilrExp option. In cases where variance increases can use
thevarFixed option (see Pinheiro & Bates, 2000 for details).

> model.4b< - update(model.4a,weights=varExp(form=~TIME))
> anova(model.4a,model.4b)

Model df  AIC  BIC logLik Test L.Ratiop - value
model.4a 1 7 3429.771 3466.451 -1707.886
model.4b 2 8 3428.390 3470.309 -1706.195 1vs 2 3.381686 0.0659

The model that includes both autocorrelation and allows for decreases in variance fits the data
marginally better (using a liberahyalue) than does the model that only includes autocorrelation.
In subsequent analyses, howevardel.4b  ran into convergence problems. Consequently, we
elect to usenodel.4a as our final levell model.

With the completion of step 4, we have exhaustively examined the form of thd level
relationship between time and job satisfaction. This analgsisdvealed that (a) individuals
randomly vary in terms of their mean levels of job satisfaction, (b) there is a linear, but not
guadratic, relationship between time and job satisfaction, (c) the strength of the linear
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relationships randomly varies amomglividuals, and (d) there ggnificantautocorrelation in
the data. At this point, we are ready to add l&veariables to try and explain the random
variation in intercepts (i.e., mean job satisfaction) and in thejbimeatisfaction slope.
5.3.5 Step 5:Predicting Intercept Variation

Step 5 in growth modeling is to examine factors that can potentially explain intercept

variation. Specifically, in our case we are interested in examining factors that explain why some

individuals have high job satisfactievhile other individuals have low job satisfaction. In this
example, we explore the idea that age is related to intercept variation.

To model this relationship, the individdalvel characteristic, age, is used as a predictor of the
job satisfaction intexept. The model that we will test is represented below using the Bryk and
Raudenbush (1992) notation.

Y = oo + py(Time) + i
o = boo + bo1(Agg) + Ly

1y =bio+ Uy

This equati on st mdaelevel bfdbaatisfactionsly) can lik enadeledjas as
function of two things. One is the mean level of job satisfacbegs) {or all respondents. The

second is a coefficient bo9. sNote thad theeedror terim fohthet h e
intercept(¢) now represents t he dinfedngob satistactioalte t we e n

the overalljob satisfactiorafter accounting for age. Ime the model is specified as:

> model.5< - Ime(MULTDV~TIME+AGE,random=~TIME|SUBNUM,
correlation=corAR1(),na.act ion=na.omit,data=UNIV.GROW |
control=list(opt="optim") )

> round(summary(model.5)$tTable,dig=3)
Value Std.Error DF t -value p -value
(Intercept) 2.347  0.146 897 16.086 0.000
TIME 0.053 0.024 897 2.205 0.028
AGE 0.0 34 0.005486 6.241 0.000

Model 5 differs only from Model 4a in that Model 5 includes a new fixed effect, AGE.

Notice that age is positively related to levels of job satisfaction. Also notice that there are fewer

degrees of freedom for age than fione since age is an individual (lex2) attribute.
In interpreting the coefficients from model 5, we conclude that in cases where age is 0 and

where time is 0, the expected level of job satisfaction is 2.347. In some ways, this interpretation
is stramge because age will never actually be 0 in this population. Consequently, it may be useful

to reparameterize age by gramgan centering the variable (see Singer, 1998). Grand mean
centering involves subtracting the overall mean from each observamsdstio.3). A
model using a granthean centered version of age (AGE?2) is presented below.

> UNIV.GROWS$AGE2< UNIV.GROWS$AGEMean(UNIV.GROWS$AGE,na.rm=T)

> model.5b< - Ime(MULTDV~TIME+AGEZ2,random=~TIME|SUBNUM,
correlation=co rAR1(),na.action=na.omit,data=UNIV.GROW ,
control=list(opt="optim") )
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> round(summary(model.5b)$tTable,dig=3)
Value Std.Error DF t -value p -value
(Intercept) 3.216  0.043 897 74.564 0.000
TIME 0.053 0.024 897 2.205 0.028
ACGE2 0.034 0.005486 6.241 0.000

With age grandnean centered, the intercept estimate of 3.216 now represents the initial job
satisfaction value for a respondent of average age (25.7 years old). Notice thedlties for
time and age didat change between this and the previous model. While we will continue our
analyses using the untransformed age variable, readers should keep in mind thiategiand
centering is often valuable in terms of enhancing the interpretability of models.

5.3.6 Step 6: Predicting Slope Variation

The final aspect of growth modeling involves attempting to determine attributes of individual
respondents that are related to slope variability. In this section, we attempt to determine whether
respondent age can explain sorhé&e variation in the timgob satisfaction slope. The model
that we test is presented below:

Yij = oo + pyy(Timey) + 1)
oj = boo + bo1(AQE) + Wy

1 = bio + b11(Agg) +

This model is similar to the moldepecified in step 5 except that we now test the assumption
that the slope between time and job satisfaction for an indivigyalg a function of an overall
slope b1g), individual agel§11), and an error term (). Inlme, the model is specified as

> model.6< - Ime(MULTDV~TIME*AGE,random=~TIME|SUBNUM,
correlation=corAR1(),na.action=na.omit,data=UNIV.GROW ,
control=list(opt="optim") )
Note that the only difference between model 5 and model 6 is that we include an interaction
term for time and ageA summary of model 6 reveals that there is a significant interaction
between time and age.

> round(summary(model.6)$tTable,dig=3)

Value Std.Error DFt -value p -value
(Intercept) 2.098 0.186 896 11.264 0.000
TIME 0.271 0.1 04 896 2.608 0.009
AGE 0.043 0.007 486 6.180 0.000
TIME:AGE -0.008 0.004 896 -2.153 0.032

Section4.2illustrated how to use th@edict command to generate points that could be
used to plot outnteractions. An alternative approach is to usenibdelcoefficients in
conjunction with high and low values for the predictors to generate points fo(tplots
predict command is more efficient)

Notice in the example that follows that the first rowtie TDAT dataframe is a row of 1s for
the intercept, while the other rows contain high and low values for time, age and the time*age
interaction.
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> TDAT< - data.frame(COEFS=(summary(model.6)$tTable)[,1],
CASE1=c(1,0,21,0),CASE  2=c(1,0,31,0),
CASE3=c(1,2,21,4 2),CASE4=c(1,2,31,62))
> TDAT
COEFS CASE1 CASR. CASE3 CASE4
(Intercept) 2.097720117 1 1 1 1
TIME 0.271036716 0 0 2 2
AGE 0.043449071 21 31 21 31
TIME:AGE -0.008432157 O 0 42 62
> sum(TDAT[,1]*TDAT[,2])
[1] 3.010151
> sum(TDAT[,1]*TDAT[,3])
[1] 3.444641
> sum(TDAT[,1]*TDATL[,4])
[1] 3.198073
> sum(TDAT[,1]*TDAT[,5])
[1] 3.463921

These points are used in the plot of the interaction. Notice that older individpatted
higher job satisfaction initially, and tended to show a very slight increase over time. In contrast,
younger respondents tended to report lower initial job satisfaction, but showed a more
pronounced increase in job satisfaction over time.
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5.4 Discontinuous Growth Models

In the previous exampl@ection5.3.2), two variants otime wereexamined/linear and
guadratic). Indeed, with only three periods it is difficult to explore more than a linear and
qguadratic trend (thragh one could treat time as a categorical variable and thereby make no
assumptions about trends). In situations where numerous repeated measures are collected,
however, a variety of interesting options exist for modeling time.
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One particularly interestingariant is the discontinuoggowth model (DGMja modelalso
referred to as thpiecewise hierarchical linear model (Raudenbush & Bryk, 2002; Hernandez
Lloreda et al., 2004) or the multiphase mieftects model (Cudeck & Klebe, 2002he basic
idea behid the DGM is to simultaneously use a set of two or threetetated covariates to
capture a known discontinuity.

For instance, Lang and Bliese (2009) use the DGM to model the performance impact of
unexpectedly changing key elements of a complex compaterd task. In the design,
participantsvorked on the task for six trials and then on the seventh trial the task became
substantially more difficult. Although there are@amerousrariants for modeling a discontinuity
of this nature (see Bliese & Lang,pness), the basic form can be captured by the three terms
TIME, TRANS, and RECOV. TIME captures the overall linear trend; TRANS captures the
immediate response to the event, and RECOV captures thzgustion slope change. A
fourth useful variant ito include a TIME.A (for absolute) that results in expressing the TRANS
and RECOV parameters in absolute versus relative terms.

The data sebinkdat wasused to illustrate variants of the DGM in Bliese and Lang (in
press) andis included in the multileugpackage. Below we applysubset ofhe R code from
Appendix B of Bliese and Lang to illustrate baion of the DGM.

> data(tankdat)
> tankdat$TRANS< - ifelse(tankdat$TIME<6,0,1)
> tankdatPRECOV< - ifelse(tankdat$TIME>5,tankdat$TIME -6,0)
> tankdat$TIME.A< - ifelse(tankdat$TIME<5,tankdat$TIME,5)
> tankdat[1:12,c("TIME","TRANS","RECOV","TIME.A")]
TIME TRANS RECOV TIME.A

1 0 0 0 O
2 1 0 0 1
3 2 0 0 2
4 3 0 0 3
5 4 0 0 4
6 5 0 0 5
7 6 1 0 5
8§ 7 1 1 5
9 8 1 2 5
10 9 1 3 5
11 10 1 4 5

12 11 1 5 5

Notice that TRANS represents a dumwgnded variable that is zero befdhe event and one
after the event. RECOV is slightly more complex in that it begins with a zero and then begins
recounting (starting with zero) after the event occurs. TIMaegins similarly to TIME but
holds the prdransition element (5 in this casg)nstant once the change has occurred.

Below the basic DGM mixedffect model is estimated and used to illustrate the difference
between TIME and TIME.A.

> tmod< - Ime(SCORE~TIME+TRANS+RECOV, random=~1]ID,tankdat)
> summary(tmod)$tTable

Val ue Std.Error DF t -value p - value
(Intercept) - 3.685818 0.6314075 2021 -5.837463 6.15978%e - 09
TIME 1.813820 0.1254260 2021 14.461275 3.535262¢ - 45

TRANS -4.979710 0.6187117 2021 - 8.048514 1.415159e -15
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RECOV -1.220342 0.1773791 202 1 -6.879848 7.962270e

> tmod< - Ime(SCORE~TIME.A+TRANS+RECOV, random=~1|ID,tankdat)
> summary(tmod)$tTable

Value Std.Error DF t -value p - value
(Intercept) - 3.6858178 0.6314075 2021 -5.837463 6.15978%e - 09
TIME.A 1.8138199 0. 1254260 2021 14.461275 3.535262¢e -45
TRANS - 3.1658903 0.5370420 2021 - 5.895051 4.378560e - 09
RECOV 0.5934783 0.1254260 2021 4.731701 2.380682¢e - 06

Notice that TIME and TIME.A have the samparameter estimate and standard errors and
both indicde that the performance score increased by 1.81 each trial. In the top model (TIME),
the parameter estimate for TRANS4s98 and the RECQOV estimate-is22 (both are
significant). When using TIME, both TRANS and RECOV represent change relative to TIME,
so the drop 0f4.98 includes the anticipated change of 1.81 associated with TIME. Likewise, the

RECOV slope 0f1.22 indicates a slope that is 1.22 less steep than the 1.81 associated with

TIME.

The parameters associated with TIME.A are absolute, the ilower model the value e8.17
represents the absolute change in performance. Likewise the now positive slope of 0.59

indicates that while the recovery slope is significantly less steep than thranqs#ion slope

associated with TIME, the recovesippe is still significantly positive.

The DGM model, like the growth model, can be examined in a series of steps examining

personlevel variability in each parameter and including predictors of this variability. Interested

readers are directed to Blieseda_ang (in press) for additional details.

5.5 Testing Emergence by Examining Error Structure

In most treatments of growth models heteroscedasticity in error structures are considered a
form of model missspecification that should be controlled (see sed&i8). Variants of

mixed-effects models, however, have been suggested as a tool to formally test whether patterns

of change in residual error variance over time have substantive mébanggand Bliese,

forthcoming)

For instance, consider the patterns displayepbg r t i ci pant s
classic experiment on group influence. In the experimental paradigm participants estimated

over

ti

movement of a small light (in inches) in a completely dark room. Participamés siide initial

estimates alone or with other group members and Sherif provided a plot of the results over three

groupbased trails. The data stterifdat  contains the values presentecsit e rplotf The

first set offigures belowpresent the patterfor participants who began making estimates alone
(and then transitioned to three trails where they made estimates with other group members). The
second set digurespresents the pattern for participants who began making estimates with other

group membrs over three trials.

> data(sherifdat)

> library(lattice)

> xyplot(y~time|as.factor(group),sherifdat[sherifdat$condition==1,],
groups=person,type=c("p","I'),ylim=c(0,8),
main="Started in an Individual Trial")

me

n
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Started in an Individual Trial

0.0 0.5 1.0 15 2.0

0.0 0.5 1.0 15 2.0
time
> xyplot(y~time|as.factor(group),she rifdat[sherifdat$condition==0,],

groups=person,type=c("p","I'),ylim=c(0,8),
main="Started in a Group Trial")
Started in a Group Trial

0.0 0.5 1.0 15 2.0
1 1 1 1 1 1 1

T T T T T T T T T T
0.0 0.5 1.0 15 2.0

time

In both cases (either starting as an individual or starting in a group setting), the plots suggest
that group members influence each othehdhat consensus emerges. The idea of consensus
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emergence appears stronger in cases where individuals started their first trial as an individual,
but both conditions appear to show this effect. Lang and Bliese (forthcoming) provide details on
how a thredevel mixedeffect modelthe census emergence model or CEll) be estimated

and how the2log likelihood values can be contrasted to formally test whether emergence is
present Details are beyond the scope of this manual, but the basic formal testrgbane is
provided below:

> threelevel< - Ime(y ~ time,
random = list(group=pdLogChol(~time),person=pdident(~1)),
data=sherifdat,control=ImeControl(opt="optim",maxIter=3000,
msMaxIter=3000))

> threelevel CEM< - update(threelevel,weights=varExp( form =~ time))

> anova(threelevel,threelevel CEM)

Model df AIC  BIC logLik Test L.Ratiop - value
threelevel 1 7182.3422 198.0817 -84.17112
threelevelCEM 2 8 155.8097 173.7977 -69.904851vs 22 8.53253 <.0001

In both models, the random statement is a complex form of aldwelemodel that allows the
slope for each group to randomly vary while fixing the time slope for individdasummary of
the modethreelevelCEM  (not shown) indicates #t the estimate for varExp-1.017
indicating an overall reduction in residual variance (emergence). Including a variance term leads
to a significant improvement in model fit suggesting that a significant emergence effect exists.
Finally, while not demnostrated here, the models can be modified to formally test whether the
emergence effect is stronger under the ¢aoditiors of startingindividually or in a group.

5.6 Empirical Bayes estimates

One of the useful aspects @famining repeated measuresrixed-effects modelss the
ability to estimatepredictedntercepts and slopes for individuaising (a)information about the
individual along with (b) informatiorirom the rest of the sample. For instance, consider the
growth modeling data presented in seeh.3. In this example, we modify the data so that only
those with responses at all three times are included.

> data(univbct)

> TEMP<- univbct[3*1:495,¢(22,1:17)] #convert to multivariate form

> TEMP<- na.exclude(TEMP[,c("SUBN UM""JOBSAT1","JOBSAT?2","JOBSAT3")])
> TEMP.UNIV< - make.univ(TEMP,TEMP[,2:4],outhame="JSAT")

> library(lattice)

> xyplot(JSAT~TIME|as.factor(SUBNUM),data=TEMP.UNIV[1:90,],
type=c("p","r","g"),col="blue",col.line="black",
xlab="Time",ylab="Job Satis faction")
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The figure shows large differences in intercepts and in slopes, yet each panel is estimated
separately without taking into consideration any of the filata other respondentén
alternative would be to estimate a simple growth model andatadrdm modeparameterso
estimate values for each individual.

>tmod< - Ime(JSAT~TIME,random=~TIME|SUBNUM,  TEMP.UNIV,
na.action=na.omit , control=list(opt="optim™))

From this model, one can extrdlce empirical Bayg estimates for both the intepteand the
slope by using theoef function: the first 12 valugdottom two rowshrelisted

> coef(tmod)[1:12,]

(Intercept) TIME
1.771548 0.358222009
3.701752 0.069173239
3.868707 - 0.002492476
3.368637 - 0.039600872
3.654505 - 0.054411154
2.629151 0.313791178
3.537183 - 0.615478500
2.843353 0.365710056

10 1.532927 0.496616898

11 2.892191 - 0.014917079
12 3.773418 0.002444280

O~NOUTPAWN P
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14 3.034727 0.103730558
Clearly the empirical Bayes @states returned frorooef correspond to what is displayed in
the lattice plot. Individual 1, for instance, has a low value for satisfaction and a positive slope

and individual 7 has a moderately high value and a strong negative slope.

The differences cabe more easily visualized by plotting all 30 individuals on a single plot.
The plot represents the intercept and slope estimates from 30 separate linear regression
equations.

>tmod3< - ImList(JSAT~TIME|SUBNUM, data=TEMP.UNIV[1:90,])

>plot(TEMP.UNIVSTIME,T EMP.UNIV$JSAT, xlab="Time",
ylab="Job Satisfaction",type="n")

>lmplot< - function(X){
for (i in 1:25){
abline(X[[i]])
b

>|lmplot(tmod3)

Job Satisfaction
3
|

Time

The second plot is for the same 30 individuals, but is based off of the empirical Bayes
estimates.

>plo t(TEMP.UNIVSTIME, TEMP.UNIV$JSAT, xlab="Time",
ylab="Job Satisfaction",type="n")
>apply(coef(tmod)[1:12,],1,abline)
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Time

The fact that each individual ' dronetletestofat es ar
thesampleadjusts some of the more estine response (and explains why these are sometimes
referred to as shrunken estimates). Empirical Bayes estimates may be particulariy useful
situations where intercepts and slopesused to predict other outcomes. For insta@tesn,
Ployhart,Thomas Anderson, & Bliese (2011)sed empirical Bayes estimates of slope changes
in job satisfaction and showed that the nature of the change (increase or decrease) was the
primary predictor of turnover intentions

It may go without saying, but one can alsérast empirical Bayes estimates from non
longitudinal nested models such as those considered in séctlarthe context of nen
longitudinal models, the values provides estimates of intercepts and slopes for each group
adjused for the overall intercept and slope. As a general rule, when ICC(1) values are small, the
empirical Bayes estimates are more strongly adjusted to the rest of the sample (more shrinkage)
than when ICC(1) values are large (see Gelman & Pardoe, 2006).

6 A brief introduction to Ime4

While the current document has focused omihee package for mixe@ffects models, the
Ime4 package in R provides additional flexibility in terms of specifying modéle Ime4
package is particularly valuable in dealing wigh fornormally distributed outcomes and (b)
partially crossed data structures.

6.1 Dichotomous outcomes

When the dependent variable is dichotomous or otherwis@ownally distributedit
requires one to estimadegeneralized linear mixed effects modeh{gl) rather than a linear
mixed effects modelBelowwe dichotomize WBEINGndusegl mer from thelme4 package
with a binomial link function to estimate a mixetfects logistic regression model.
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>library(multilevel)
>library(Ime4)

>data(bh1996)
>tmod< - glmer(ifelse(WBEING>3.5,1,0)~HRS+G.HRS+(1|GRP),

family="binomial", control=glmerControl(optimizer="bobyga"), bh1996)
>summary(tmod)

Generalized linear mixed model fit by maximum likelihood (Laplace
Approximation) [gimerMod]
Family: binomial (log it)
Formula: ifelse(WBEING > 3.5, 1, 0) ~ HRS + G.HRS + (1 | GRP)
Data: bh1996
Control: glmerControl(optimizer = "bobyga")

AIC  BIC logLik deviance df.resid
7572.1 7599.7 -3782.0 7564.1 7378

Scaled residuals:
Min  1Q Median 3Q Max
-0.9902 -0.5559 -0.4672 -0.3587 4.6130

Random effects:
Groups Name Variance Std.Dev.
GRP (Intercept) 0.06323 0.2515
Number of obs: 7382, groups: GRP, 99

Fixed effects:

Estimate Std. Error z value Pr( >|z|)
(Intercept) 2.80660 0.53504 5.246 1.56e - Q7 *x*
HRS -0.09860 0.01465 -6.7311.69e - 11 ***
G.HRS -0.26784 0.04923 -5.4405.31e - 08 ***
Signif. codes: 0O 6***6 0.001 6**6 0.01 6*6 0.05
Correlation of Fixe d Effects:
(Intr) HRS

HRS -0.020
G.HRS -0.954 -0.272

The precision of the modal terms of log likelihooatan be improved by including tmAGQ
option with a value greater than 1 (100 in this caddtice the slight change in log likeood
values and the minor changes in parameter estimates and standard errors between the model
based omAGQ=1(above) anchAGQ=25(below). In practice, one would likely want to change
nAGQualues toa) verify parameter estimates and stamidamrorsand(b) veritythat contrasts of
-2log likelihood values contrasting models wathova are similar with highenAGQvalues.In
my experience using values above 100 is rarely useful.

> tmod.r< - gimer(ifelse(WBEING>3.5,1,0)~HRS+G.HRS+(1|GRP),
family="binomia I",  control=glmerControl(optimizer="bobyqga"),
bh1996,nAGQ=25)

> logLik(tmod) # Original model with nAGQ=1
'log Lik.' - 3782.036 (df=4)
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> logLik(tmod.r) # Model with nAGQ = 25
'log Lik.' - 3781.999 (df=4)

> summary(tmod.r)$coef
Estimate St d. Error zvalue Pr(>|z|)

(Intercept) 2.80640657 0.53692297 5.226833 1.724383e -07
HRS - 0.09861117 0.01466700 -6.723335 1.776112e  -11
G.HRS - 0.26782094 0.04939543 -5.421978 5.894300e - 08

6.2 Crossed and partially crossed models

Thesecond suationin whichime4 is particularly valuable is1 cases where data are
partially or fully crossed. For instance, in a longitudinal study individuals might be nested
within groups, but over timsome individualsnight switch from one group to anothdf.no
participants switched groups, the data would be fully nested with repeated observations nested
within individuals nested within groups (a thilegel model). Inme the thredevel nested
model would be specified aandom= ~1|GRP/IND . If individuds switch groups, though,
the fully nested structure no longer holds.Inhe4 and thdmer function, however, the
structure could be specified @4GRP)+(1|] IND) . Thelmer specification does not assume
fully nested data and will provide variance estimé#tése data are partially crossed.

6.3 Predicting values in Ime4

As illustrated in the texttatistical models can be used to predict levels of an outcome
variable given specific values of predictors. R has a numhaedfct functions linked to
specific malels €.g.,] m, glm, Ime , Imer, glmer ). Thepredict functions are
generallyconsistent in terms of usage; however, there are minor differences when applied to
specificmodels. Recall, for instance, thate must specifievel=0 to obtain overall sample
based predictions when usihge .

In most cases in mixeeffects models, one will be interested in obtaining predictions for the
overall sample rather than predictions for any specific unit; however, imére andglmer
functions associated with Ime4, theedict command uses the optiomform=NA rather than
level=0 to indicate that predictions should be made based on the parameter estimates from the
overall sampleAn example is provided below:

\Y

library(multilevel)
library(Ime4)
data(bh1996)

VvV V

\Y

t mod<- Imer(WBEING~HRS*LEAD+(1|GRP),bh1996)

\Y

TDAT< data.frame(HRS=c(7,7,12,12),LEAD=c(2.12,2.12,3.66,3.66))
predict(tmod, TDAT,re.form=NA)

1 2 3 4
2.519160 2.519160 3.137911 3.137911

\Y
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As another example, the code below iliagts the use of thigpe="response" option
with models that have a dichotomous variable as the outcome. Notice that one can transform the
prediction to a percentZ.377 to 0.085 or 8.5%), but it is often easier to use
type="response"

>tmod< - glmer(ife  Ise(WBEING>3.5,1,0)~LEAD+(1|GRP),family="binomial",bh1996,
control=glmerControl(optimizer="bobyga"))

> TDAT< - data.frame(LEAD=c(2.12,3.66))

> predict(tmod, TDAT,re.form=NA)
1 2
-2.3774501 - 0.6565601

>exp( -2.3774501)/(1+exp( -2.37745 01))
[1] 0.08490848

> predict(tmod, TDAT,re.form=NA type="response")
1 2
0.08490848 0.34151277

7 Miscellaneous Functions

Themultilevel package has a number of other functions that have either been referenced in
appendices of publishedpers, or are of basic utility to applied organizational researchers. This
section briefly describes these functions. Complete help files are availablemulthevel
package for each of the functions discussed.

7.1 Scale reliability: cronbach and item.to tal

Two functions that are can be particularly useful in estimating the reliability of-iunti
scales are theronbach and thatem.total functions. Both functions take a single
argument, a dataframe with multiple columns where each column represetitsno in a multi
item scale.

7.2 Random Group Resampling for OLS Regression Models

The functionrgr.OLS allows one to contrast a grolgwvel hierarchical regression model
with an identically specified model where group identifiers are randomly generatisctygéof
model was estimated in Bliese and Halverson (2002).

7.3 Estimating bias in nested regression models: simbias

Bliese and Hanges (2004) showed that a failure to model the nested properties of data in
ordinary least squares regression could leaddssaof power in terms of detecting effects. The
article provided theimbias function to help estimate the degree of power loss in complex
situations.

7.4 Detecting mediation effects: sobel

MacKinnon, Lockwood, Hoffman, West and Sheets (2002) showed that oh#me
mediation tests used in psychology tend to have low power. One test that had reasonable power
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was Sobel's (1982) indirect test for mediation. 3bieel function provides a simple way to
run Sobel's (1982) test for mediatioDetails on the usef thesobel functionareavailable in
the help files.

8 Conclusion

This document has providechan-technicaloverview of how R can be used in a wide variety
of multilevel models. Clearlythere is some degree of effort requiredetarnR; however, he
berefits arewell worth the effort fothosewhose work revolves arourmbmplex data analyses
My hope is thathe explanations andxamples in this document will hetpake R accessible to
users so that the described models can be applied to a varietyyticgmmablems.
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