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adj_grad Convert Non-Positive-Definite Correlation Matrix to Positive-Definite
Matrix Using the Adjusted Gradient Updating Method

Description

This function converts a non-positive-definite correlation matrix to a positive-definite matrix using
the adjusted gradient updating method with initial matrix B1.

Usage

adj_grad(Sigma = NULL, B1 = NULL, tau = 0.5, tol = 0.1, steps = 100,
msteps = 10)

Arguments

Sigma the non-PD correlation matrix

B1 the initial matrix for algorithm; if NULL, uses a scaled initial matrix with diag-
onal elements sqrt(nrow(Sigma))/2

tau parameter used to calculate theta

tol maximum error for Frobenius norm distance between new matrix and original
matrix

steps maximum number of steps for k (default = 100)

msteps maximum number of steps for m (default = 10)

Value

list with Sigma2 the new correlation matrix, dist the Frobenius norm distance between Sigma2 and
Sigma, eig0 original eigenvalues of Sigma, eig2 eigenvalues of Sigma2

References

S Maree (2012). Correcting Non Positive Definite Correlation Matrices. BSc Thesis Applied Math-
ematics, TU Delft. http://resolver.tudelft.nl/uuid:2175c274-ab03-4fd5-85a9-228fe421cdbf.

JF Yin and Y Zhang (2013). Alternative gradient algorithms for computing the nearest correla-
tion matrix. Applied Mathematics and Computation, 219(14): 7591-7599. https://doi.org/10.
1016/j.amc.2013.01.045.

Y Zhang and JF Yin. Modified alternative gradients algorithm for computing the nearest correlation
matrix. Internal paper of the Tongji University, Shanghai.

Examples

Sigma <- matrix(c(1, 0, 0.8, 0, 1, 0.8, 0.8, 0.8, 1), 3, 3, byrow = TRUE)
adj_grad(Sigma)

http://resolver.tudelft.nl/uuid:2175c274-ab03-4fd5-85a9-228fe421cdbf
https://doi.org/10.1016/j.amc.2013.01.045
https://doi.org/10.1016/j.amc.2013.01.045
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calc_betas Calculate Beta Coefficients for Correlated Systems of Continuous
Variables

Description

This function calculates the beta (slope) coefficients used in nonnormsys by the techniques of Head-
rick and Beasley (doi: 10.1081/SAC120028431). These coefficients are determined based on the
correlations between independent variables X(pj) for a given outcome Yp, for p = 1, ..., M, the
correlations between that outcome Yp and the X(pj) terms, and the variances. If there are contin-
uous mixture variables and the matrices in corr.yx are specified in terms of correlations between
outcomes and non-mixture and mixture variables, then the solutions are the slope coefficients for the
non-mixture and mixture variables. In this case, the number of columns of the matrices of corr.yx
should not match the dimensions of the matrices in corr.x. The correlations in corr.x will be
calculated in terms of non-mixture and mixture variables using rho_M1M2 and rho_M1Y. If there
are continuous mixture variables and the matrices in corr.yx are specified in terms of correlations
between outcomes and non-mixture and components of mixture variables, then the solutions are the
slope coefficients for the non-mixture and components of mixture variables. In this case, the num-
ber of columns of the matrices of corr.yx should match the dimensions of the matrices in corr.x.
The vignette Theory and Equations for Correlated Systems of Continuous Variables gives the
equations, and the vignette Correlated Systems of Statistical Equations with Non-Mixture and
Mixture Continuous Variables gives examples. There are also vignettes in SimCorrMix which
provide more details on continuous non-mixture and mixture variables.

Usage

calc_betas(corr.yx = list(), corr.x = list(), vars = list(),
mix_pis = list(), mix_mus = list(), mix_sigmas = list(),
error_type = c("non_mix", "mix"), n = 25, seed = 1234)

Arguments

corr.yx a list of length M = # of equations, where the p-th component is a 1 row matrix
of correlations between Yp and X(pj); if there are mixture variables and the
betas are desired in terms of these (and not the components), then corr.yx
should be specified in terms of correlations between outcomes and non-mixture
or mixture variables, and the number of columns of the matrices of corr.yx
should not match the dimensions of the matrices in corr.x; if the betas are
desired in terms of the components, then corr.yx should be specified in terms
of correlations between outcomes and non-mixture or components of mixture
variables, and the number of columns of the matrices of corr.yx should match
the dimensions of the matrices in corr.x

corr.x list of length M, each component a list of length M; corr.x[[p]][[q]] is ma-
trix of correlations for independent variables in equations p (X(pj) for outcome
Yp) and q (X(qj) for outcome Yq); if p = q, corr.x[[p]][[q]] is a corre-
lation matrix with nrow(corr.x[[p]][[q]]) = # X(pj) for outcome Yp; if
p != q, corr.x[[p]][[q]] is a non-symmetric matrix of correlations where

http://doi.org/10.1081/SAC-120028431
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rows correspond to covariates for Yp so that nrow(corr.x[[p]][[q]]) = #
X(pj) for outcome Yp and columns correspond to covariates for Yq so that
ncol(corr.x[[p]][[q]]) = # X(qj) for outcome Yq; order is 1st continuous
non-mixture and 2nd components of continuous mixture variables

vars a list of same length as corr.x of vectors of variances for X(pj), E; E term
should be last; order should be the same as in corr.x

mix_pis a list of same length as corr.x, where mix_pis[[p]][[j]] is a vector of mix-
ing probabilities for Xmix(pj) that sum to 1, the j-th mixture covariate for out-
come Yp; the last element of mix_pis[[p]] is forEp (if error_type = "mix");
if Yp has no mixture variables, use mix_pis[[p]] = NULL

mix_mus a list of same length as corr.x, where mix_mus[[p]][[j]] is a vector of means
for Xmix(pj), the j-th mixture covariate for outcome Yp; the last element of
mix_mus[[p]] is for Ep (if error_type = "mix"); if Yp has no mixture vari-
ables, use mix_mus[[p]] = NULL

mix_sigmas a list of same length as corr.x, where mix_sigmas[[p]][[j]] is a vector of
standard deviations for Xmix(pj), the j-th mixture covariate for outcome Yp; the
last element of mix_sigmas[[p]] is forEp (if error_type = "mix"); if Yp has
no mixture variables, use mix_sigmas[[p]] = NULL

error_type "non_mix" if all error terms have continuous non-mixture distributions, "mix" if
all error terms have continuous mixture distributions, defaults to "non_mix"

n the number of sets of random uniform(0, 1) numbers used as starting values in
nleqslv to find the betas

seed the seed for random number generation

Value

betas a matrix of slope coefficients where rows represent the outcomes; extra zeros are appended
at the end of a row if that outcome has fewer X(pj) terms

References

Headrick TC, Beasley TM (2004). A Method for Simulating Correlated Non-Normal Systems of
Linear Statistical Equations. Communications in Statistics - Simulation and Computation, 33(1).
doi: 10.1081/SAC120028431

See Also

nonnormsys, rho_M1M2, rho_M1Y

Examples

# Example: system of three equations for 2 independent variables, where each
# error term has unit variance, from Headrick & Beasley (2002)
corr.yx <- list(matrix(c(0.4, 0.4), 1), matrix(c(0.5, 0.5), 1),
matrix(c(0.6, 0.6), 1))

corr.x <- list()
corr.x[[1]] <- corr.x[[2]] <- corr.x[[3]] <- list()
corr.x[[1]][[1]] <- matrix(c(1, 0.1, 0.1, 1), 2, 2)

http://doi.org/10.1081/SAC-120028431
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corr.x[[1]][[2]] <- matrix(c(0.1974318, 0.1859656, 0.1879483, 0.1858601),
2, 2, byrow = TRUE)

corr.x[[1]][[3]] <- matrix(c(0.2873190, 0.2589830, 0.2682057, 0.2589542),
2, 2, byrow = TRUE)

corr.x[[2]][[1]] <- t(corr.x[[1]][[2]])
corr.x[[2]][[2]] <- matrix(c(1, 0.35, 0.35, 1), 2, 2)
corr.x[[2]][[3]] <- matrix(c(0.5723303, 0.4883054, 0.5004441, 0.4841808),

2, 2, byrow = TRUE)
corr.x[[3]][[1]] <- t(corr.x[[1]][[3]])
corr.x[[3]][[2]] <- t(corr.x[[2]][[3]])
corr.x[[3]][[3]] <- matrix(c(1, 0.7, 0.7, 1), 2, 2)
vars <- list(rep(1, 3), rep(1, 3), rep(1, 3))
calc_betas(corr.yx, corr.x, vars)

calc_corr_y Calculate Expected Correlation Matrix of Outcomes (Y) for Corre-
lated Systems of Continuous Variables

Description

This function calculates the expected correlation matrix for outcomes (Y) in a correlated system of
continuous variables. This system is generated with nonnormsys using the techniques of Headrick
and Beasley (doi: 10.1081/SAC120028431). These correlations are determined based on the beta
(slope) coefficients calculated with calc_betas, the correlations between independent variables
X(pj) for a given outcome Yp, for p = 1, ..., M, the correlations between error terms, and the
variances. The result can be used to compare the simulated correlation matrix to the theoretical
correlation matrix. If there are continuous mixture variables and the betas are specified in terms of
non-mixture and mixture variables and/or error_type = "mix", then the correlations in corr.x
and/or corr.e will be calculated in terms of non-mixture and mixture variables using rho_M1M2 and
rho_M1Y. In this case, the dimensions of the matrices in corr.x should not match the number of
columns of betas. The vignette Theory and Equations for Correlated Systems of Continuous
Variables gives the equations, and the vignette Correlated Systems of Statistical Equations with
Non-Mixture and Mixture Continuous Variables gives examples. There are also vignettes in
SimCorrMix which provide more details on continuous non-mixture and mixture variables.

Usage

calc_corr_y(betas = NULL, corr.x = list(), corr.e = NULL, vars = list(),
mix_pis = list(), mix_mus = list(), mix_sigmas = list(),
error_type = c("non_mix", "mix"))

Arguments

betas a matrix of the slope coefficients calculated with calc_betas, rows represent
the outcomes

http://doi.org/10.1081/SAC-120028431
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corr.x list of length M, each component a list of length M; corr.x[[p]][[q]] is ma-
trix of correlations for independent variables in equations p (X(pj) for outcome
Yp) and q (X(qj) for outcome Yq); if p = q, corr.x[[p]][[q]] is a corre-
lation matrix with nrow(corr.x[[p]][[q]]) = # X(pj) for outcome Yp; if
p != q, corr.x[[p]][[q]] is a non-symmetric matrix of correlations where
rows correspond to covariates for Yp so that nrow(corr.x[[p]][[q]]) = #
X(pj) for outcome Yp and columns correspond to covariates for Yq so that
ncol(corr.x[[p]][[q]]) = # X(qj) for outcome Yq; order is 1st continuous
non-mixture and 2nd components of continuous mixture variables

corr.e correlation matrix for continuous non-mixture or components of mixture error
terms

vars a list of same length as corr.x of vectors of variances for X(pj), E; E term
should be last; order should be the same as in corr.x

mix_pis a list of same length as corr.x, where mix_pis[[p]][[j]] is a vector of mix-
ing probabilities for Xmix(pj) that sum to 1, the j-th mixture covariate for out-
come Yp; the last element of mix_pis[[p]] is forEp (if error_type = "mix");
if Yp has no mixture variables, use mix_pis[[p]] = NULL

mix_mus a list of same length as corr.x, where mix_mus[[p]][[j]] is a vector of means
for Xmix(pj), the j-th mixture covariate for outcome Yp; the last element of
mix_mus[[p]] is for Ep (if error_type = "mix"); if Yp has no mixture vari-
ables, use mix_mus[[p]] = NULL

mix_sigmas a list of same length as corr.x, where mix_sigmas[[p]][[j]] is a vector of
standard deviations for Xmix(pj), the j-th mixture covariate for outcome Yp; the
last element of mix_sigmas[[p]] is forEp (if error_type = "mix"); if Yp has
no mixture variables, use mix_sigmas[[p]] = NULL

error_type "non_mix" if all error terms have continuous non-mixture distributions, "mix" if
all error terms have continuous mixture distributions, defaults to "non_mix"

Value

corr.y the correlation matrix for the outcomes Y

References

Headrick TC, Beasley TM (2004). A Method for Simulating Correlated Non-Normal Systems of
Linear Statistical Equations. Communications in Statistics - Simulation and Computation, 33(1).
doi: 10.1081/SAC120028431

See Also

nonnormsys, calc_betas, rho_M1M2, rho_M1Y

Examples

# Example: system of three equations for 2 independent variables, where each
# error term has unit variance, from Headrick & Beasley (2002)
corr.yx <- list(matrix(c(0.4, 0.4), 1), matrix(c(0.5, 0.5), 1),

matrix(c(0.6, 0.6), 1))

http://doi.org/10.1081/SAC-120028431


8 calc_corr_ye

corr.x <- list()
corr.x[[1]] <- corr.x[[2]] <- corr.x[[3]] <- list()
corr.x[[1]][[1]] <- matrix(c(1, 0.1, 0.1, 1), 2, 2)
corr.x[[1]][[2]] <- matrix(c(0.1974318, 0.1859656, 0.1879483, 0.1858601),

2, 2, byrow = TRUE)
corr.x[[1]][[3]] <- matrix(c(0.2873190, 0.2589830, 0.2682057, 0.2589542),

2, 2, byrow = TRUE)
corr.x[[2]][[1]] <- t(corr.x[[1]][[2]])
corr.x[[2]][[2]] <- matrix(c(1, 0.35, 0.35, 1), 2, 2)
corr.x[[2]][[3]] <- matrix(c(0.5723303, 0.4883054, 0.5004441, 0.4841808),

2, 2, byrow = TRUE)
corr.x[[3]][[1]] <- t(corr.x[[1]][[3]])
corr.x[[3]][[2]] <- t(corr.x[[2]][[3]])
corr.x[[3]][[3]] <- matrix(c(1, 0.7, 0.7, 1), 2, 2)
corr.e <- matrix(0.4, nrow = 3, ncol = 3)
diag(corr.e) <- 1
vars <- list(rep(1, 3), rep(1, 3), rep(1, 3))
betas <- calc_betas(corr.yx, corr.x, vars)
calc_corr_y(betas, corr.x, corr.e, vars)

calc_corr_ye Calculate Expected Matrix of Correlations between Outcomes (Y) and
Error Terms (E) for Correlated Systems of Continuous Variables

Description

This function calculates the expected correlation matrix between Outcomes (Y) and Error Terms
(E) in a correlated system of continuous variables. This system is generated with nonnormsys
using the techniques of Headrick and Beasley (doi: 10.1081/SAC120028431). These correlations
are determined based on the beta (slope) coefficients calculated with calc_betas, the correlations
between independent variables X(pj) for a given outcome Yp, for p = 1, ..., M, the correlations
between error terms, and the variances. The result can be used to compare the simulated correlation
matrix to the theoretical correlation matrix. If there are continuous mixture variables and the betas
are specified in terms of non-mixture and mixture variables, then correlations in corr.x will be
recalculated in terms of non-mixture or mixture variables using rho_M1M2 and rho_M1Y. In this
case, the dimensions of the matrices in corr.x should not match the number of columns of betas.
If error_type = "mix", the correlations in corr.e will also be recalculated and the function result
will be in terms of mixture error terms. If error_type = "non_mix", the function result will be
in terms of non-mixture error terms. The vignette Theory and Equations for Correlated Systems
of Continuous Variables gives the equations, and the vignette Correlated Systems of Statistical
Equations with Non-Mixture and Mixture Continuous Variables gives examples. There are
also vignettes in SimCorrMix which provide more details on continuous non-mixture and mixture
variables.

Usage

calc_corr_ye(betas = NULL, corr.x = list(), corr.e = NULL,
vars = list(), mix_pis = list(), mix_mus = list(),
mix_sigmas = list(), error_type = c("non_mix", "mix"))

http://doi.org/10.1081/SAC-120028431
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Arguments

betas a matrix of the slope coefficients calculated with calc_betas, rows represent
the outcomes

corr.x list of length M, each component a list of length M; corr.x[[p]][[q]] is ma-
trix of correlations for independent variables in equations p (X(pj) for outcome
Yp) and q (X(qj) for outcome Yq); if p = q, corr.x[[p]][[q]] is a corre-
lation matrix with nrow(corr.x[[p]][[q]]) = # X(pj) for outcome Yp; if
p != q, corr.x[[p]][[q]] is a non-symmetric matrix of correlations where
rows correspond to covariates for Yp so that nrow(corr.x[[p]][[q]]) = #
X(pj) for outcome Yp and columns correspond to covariates for Yq so that
ncol(corr.x[[p]][[q]]) = # X(qj) for outcome Yq; order is 1st continuous
non-mixture and 2nd components of continuous mixture variables

corr.e correlation matrix for continuous non-mixture or components of mixture error
terms

vars a list of same length as corr.x of vectors of variances for X(pj), E; E term
should be last; order should be the same as in corr.x

mix_pis a list of same length as corr.x, where mix_pis[[p]][[j]] is a vector of mix-
ing probabilities for Xmix(pj) that sum to 1, the j-th mixture covariate for out-
come Yp; the last element of mix_pis[[p]] is forEp (if error_type = "mix");
if Yp has no mixture variables, use mix_pis[[p]] = NULL

mix_mus a list of same length as corr.x, where mix_mus[[p]][[j]] is a vector of means
for Xmix(pj), the j-th mixture covariate for outcome Yp; the last element of
mix_mus[[p]] is for Ep (if error_type = "mix"); if Yp has no mixture vari-
ables, use mix_mus[[p]] = NULL

mix_sigmas a list of same length as corr.x, where mix_sigmas[[p]][[j]] is a vector of
standard deviations for Xmix(pj), the j-th mixture covariate for outcome Yp; the
last element of mix_sigmas[[p]] is forEp (if error_type = "mix"); if Yp has
no mixture variables, use mix_sigmas[[p]] = NULL

error_type "non_mix" if all error terms have continuous non-mixture distributions, "mix" if
all error terms have continuous mixture distributions, defaults to "non_mix"

Value

corr.ye the matrix of correlations between Y and E

References

Headrick TC, Beasley TM (2004). A Method for Simulating Correlated Non-Normal Systems of
Linear Statistical Equations. Communications in Statistics - Simulation and Computation, 33(1).
doi: 10.1081/SAC120028431

See Also

nonnormsys, calc_betas, rho_M1M2, rho_M1Y

http://doi.org/10.1081/SAC-120028431
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Examples

# Example: system of three equations for 2 independent variables, where each
# error term has unit variance, from Headrick & Beasley (2002)
corr.yx <- list(matrix(c(0.4, 0.4), 1), matrix(c(0.5, 0.5), 1),

matrix(c(0.6, 0.6), 1))
corr.x <- list()
corr.x[[1]] <- corr.x[[2]] <- corr.x[[3]] <- list()
corr.x[[1]][[1]] <- matrix(c(1, 0.1, 0.1, 1), 2, 2)
corr.x[[1]][[2]] <- matrix(c(0.1974318, 0.1859656, 0.1879483, 0.1858601),

2, 2, byrow = TRUE)
corr.x[[1]][[3]] <- matrix(c(0.2873190, 0.2589830, 0.2682057, 0.2589542),

2, 2, byrow = TRUE)
corr.x[[2]][[1]] <- t(corr.x[[1]][[2]])
corr.x[[2]][[2]] <- matrix(c(1, 0.35, 0.35, 1), 2, 2)
corr.x[[2]][[3]] <- matrix(c(0.5723303, 0.4883054, 0.5004441, 0.4841808),

2, 2, byrow = TRUE)
corr.x[[3]][[1]] <- t(corr.x[[1]][[3]])
corr.x[[3]][[2]] <- t(corr.x[[2]][[3]])
corr.x[[3]][[3]] <- matrix(c(1, 0.7, 0.7, 1), 2, 2)
corr.e <- matrix(0.4, nrow = 3, ncol = 3)
diag(corr.e) <- 1
vars <- list(rep(1, 3), rep(1, 3), rep(1, 3))
betas <- calc_betas(corr.yx, corr.x, vars)
calc_corr_ye(betas, corr.x, corr.e, vars)

calc_corr_yx Calculate Expected Matrix of Correlations between Outcomes (Y) and
Covariates (X) for Correlated Systems of Continuous Variables

Description

This function calculates the expected correlation matrix between Outcomes (Y) and Covariates
(X) in a correlated system of continuous variables. This system is generated with nonnormsys
using the techniques of Headrick and Beasley (doi: 10.1081/SAC120028431). These correlations
are determined based on the beta (slope) coefficients calculated with calc_betas, the correlations
between independent variablesX(pj) for a given outcome Yp, for p = 1, ..., M, and the variances.
The result can be used to compare the simulated correlation matrix to the theoretical correlation
matrix. If there are continuous mixture variables and the betas are specified in terms of non-mixture
and mixture variables, then the correlations in corr.x will be calculated in terms of non-mixture
and mixture variables using rho_M1M2 and rho_M1Y. In this case, the dimensions of the matrices
in corr.x should not match the number of columns of betas. The function result will be in terms
of non-mixture and mixture variables. Otherwise, the result will be in terms of non-mixture and
components of mixture variables. The vignette Theory and Equations for Correlated Systems
of Continuous Variables gives the equations, and the vignette Correlated Systems of Statistical
Equations with Non-Mixture and Mixture Continuous Variables gives examples. There are
also vignettes in SimCorrMix which provide more details on continuous non-mixture and mixture
variables.

http://doi.org/10.1081/SAC-120028431
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Usage

calc_corr_yx(betas = NULL, corr.x = list(), vars = list(),
mix_pis = list(), mix_mus = list(), mix_sigmas = list(),
error_type = c("non_mix", "mix"))

Arguments

betas a matrix of the slope coefficients calculated with calc_betas, rows represent
the outcomes

corr.x list of length M, each component a list of length M; corr.x[[p]][[q]] is ma-
trix of correlations for independent variables in equations p (X(pj) for outcome
Yp) and q (X(qj) for outcome Yq); if p = q, corr.x[[p]][[q]] is a corre-
lation matrix with nrow(corr.x[[p]][[q]]) = # X(pj) for outcome Yp; if
p != q, corr.x[[p]][[q]] is a non-symmetric matrix of correlations where
rows correspond to covariates for Yp so that nrow(corr.x[[p]][[q]]) = #
X(pj) for outcome Yp and columns correspond to covariates for Yq so that
ncol(corr.x[[p]][[q]]) = # X(qj) for outcome Yq; order is 1st continuous
non-mixture and 2nd components of continuous mixture variables

vars a list of same length as corr.x of vectors of variances for X(pj), E; E term
should be last; order should be the same as in corr.x

mix_pis a list of same length as corr.x, where mix_pis[[p]][[j]] is a vector of mix-
ing probabilities for Xmix(pj) that sum to 1, the j-th mixture covariate for out-
come Yp; the last element of mix_pis[[p]] is forEp (if error_type = "mix");
if Yp has no mixture variables, use mix_pis[[p]] = NULL

mix_mus a list of same length as corr.x, where mix_mus[[p]][[j]] is a vector of means
for Xmix(pj), the j-th mixture covariate for outcome Yp; the last element of
mix_mus[[p]] is for Ep (if error_type = "mix"); if Yp has no mixture vari-
ables, use mix_mus[[p]] = NULL

mix_sigmas a list of same length as corr.x, where mix_sigmas[[p]][[j]] is a vector of
standard deviations for Xmix(pj), the j-th mixture covariate for outcome Yp; the
last element of mix_sigmas[[p]] is forEp (if error_type = "mix"); if Yp has
no mixture variables, use mix_sigmas[[p]] = NULL

error_type "non_mix" if all error terms have continuous non-mixture distributions, "mix" if
all error terms have continuous mixture distributions, defaults to "non_mix"

Value

corr.yx a list of length M, where corr.yx[[p]] is matrix of correlations between Y (rows) and
Xp (columns); if the dimensions of betas match the dimensions of the matrices in corr.x, then
the correlations will be in terms of non-mixture and components of mixture variables; otherwise,
mix_pis, mix_mus, and mix_sigmas must be provided and the correlations will be in terms of
non-mixture and mixture variables

References

Headrick TC, Beasley TM (2004). A Method for Simulating Correlated Non-Normal Systems of
Linear Statistical Equations. Communications in Statistics - Simulation and Computation, 33(1).
doi: 10.1081/SAC120028431

http://doi.org/10.1081/SAC-120028431
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See Also

nonnormsys, calc_betas, rho_M1M2, rho_M1Y

Examples

# Example: system of three equations for 2 independent variables, where each
# error term has unit variance, from Headrick & Beasley (2002)
corr.yx <- list(matrix(c(0.4, 0.4), 1), matrix(c(0.5, 0.5), 1),

matrix(c(0.6, 0.6), 1))
corr.x <- list()
corr.x[[1]] <- corr.x[[2]] <- corr.x[[3]] <- list()
corr.x[[1]][[1]] <- matrix(c(1, 0.1, 0.1, 1), 2, 2)
corr.x[[1]][[2]] <- matrix(c(0.1974318, 0.1859656, 0.1879483, 0.1858601),

2, 2, byrow = TRUE)
corr.x[[1]][[3]] <- matrix(c(0.2873190, 0.2589830, 0.2682057, 0.2589542),

2, 2, byrow = TRUE)
corr.x[[2]][[1]] <- t(corr.x[[1]][[2]])
corr.x[[2]][[2]] <- matrix(c(1, 0.35, 0.35, 1), 2, 2)
corr.x[[2]][[3]] <- matrix(c(0.5723303, 0.4883054, 0.5004441, 0.4841808),

2, 2, byrow = TRUE)
corr.x[[3]][[1]] <- t(corr.x[[1]][[3]])
corr.x[[3]][[2]] <- t(corr.x[[2]][[3]])
corr.x[[3]][[3]] <- matrix(c(1, 0.7, 0.7, 1), 2, 2)
corr.e <- matrix(0.4, nrow = 3, ncol = 3)
diag(corr.e) <- 1
vars <- list(rep(1, 3), rep(1, 3), rep(1, 3))
betas <- calc_betas(corr.yx, corr.x, vars)
calc_corr_yx(betas, corr.x, vars)

checkpar Parameter Check for Simulation Functions

Description

This function checks the parameter inputs to the simulation functions nonnormsys, corrsys, and
corrsys2. It should be used prior to execution of these functions to ensure all inputs are of the
correct format. Those functions do not contain parameter checks in order to decrease simulation
time. This would be important if the user is running several simulation repetitions so that the inputs
only have to be checked once. Note that the inputs do not include all of the inputs to the simulation
functions. See the appropriate function documentation for more details about parameter inputs.
Since the parameter input list is extensive and this function does not check for all possible errors, if
simulation gives an error, the user should still check the parameter inputs.

Usage

checkpar(M = NULL, method = c("Fleishman", "Polynomial"),
error_type = c("non_mix", "mix"), means = list(), vars = list(),
skews = list(), skurts = list(), fifths = list(), sixths = list(),
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Six = list(), mix_pis = list(), mix_mus = list(), mix_sigmas = list(),
mix_skews = list(), mix_skurts = list(), mix_fifths = list(),
mix_sixths = list(), mix_Six = list(), marginal = list(),
support = list(), lam = list(), p_zip = list(), pois_eps = list(),
size = list(), prob = list(), mu = list(), p_zinb = list(),
nb_eps = list(), corr.x = list(), corr.yx = list(), corr.e = NULL,
same.var = NULL, subj.var = NULL, int.var = NULL, tint.var = NULL,
betas.0 = NULL, betas = list(), betas.subj = list(),
betas.int = list(), betas.t = NULL, betas.tint = list(),
rand.int = c("none", "non_mix", "mix"), rand.tsl = c("none", "non_mix",
"mix"), rand.var = NULL, corr.u = list(), quiet = FALSE)

Arguments

M the number of dependent variables Y (outcomes); equivalently, the number of
equations in the system

method the PMT method used to generate all continuous variables, including indepen-
dent variables (covariates), error terms, and random effects; "Fleishman" uses
Fleishman’s third-order polynomial transformation and "Polynomial" uses Head-
rick’s fifth-order transformation

error_type "non_mix" if all error terms have continuous non-mixture distributions, "mix" if
all error terms have continuous mixture distributions

means if no random effects, a list of length M where means[[p]] contains a vector of
means for the continuous independent variables in equation p with non-mixture
(Xcont) or mixture (Xmix) distributions and for the error terms (E); order in
vector is Xcont, Xmix, E

if there are random effects, a list of length M + 1 if the effects are the same across
equations or 2 * M if they differ; where means[M + 1] or means[(M + 1):(2 * M)]
are vectors of means for all random effects with continuous non-mixture or mix-
ture distributions; order in vector is 1st random interceptU0 (if rand.int != "none"),
2nd random time slope U1 (if rand.tsl != "none"), 3rd other random slopes
with non-mixture distributions Ucont, 4th other random slopes with mixture dis-
tributions Umix

vars a list of same length and order as means containing vectors of variances for the
continuous variables, error terms, and any random effects

skews if no random effects, a list of length M where skews[[p]] contains a vector of
skew values for the continuous independent variables in equation p with non-
mixture (Xcont) distributions and for E if error_type = "non_mix"; order in
vector is Xcont, E

if there are random effects, a list of length M + 1 if the effects are the same across
equations or 2 * M if they differ; where skews[M + 1] or skews[(M + 1):(2 * M)]
are vectors of skew values for all random effects with continuous non-mixture
distributions; order in vector is 1st random interceptU0 (if rand.int = "non_mix"),
2nd random time slopeU1 (if rand.tsl = "non_mix"), 3rd other random slopes
with non-mixture distributions Ucont

skurts a list of same length and order as skews containing vectors of standardized kur-
toses (kurtosis - 3) for the continuous variables, error terms, and any random
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effects with non-mixture distributions

fifths a list of same length and order as skews containing vectors of standardized fifth
cumulants for the continuous variables, error terms, and any random effects with
non-mixture distributions; not necessary for method = "Fleishman"

sixths a list of same length and order as skews containing vectors of standardized sixth
cumulants for the continuous variables, error terms, and any random effects with
non-mixture distributions; not necessary for method = "Fleishman"

Six a list of length M, M + 1, or 2 * M, where Six[1:M] are for Xcont, E (if
error_type = "non_mix") and Six[M + 1] or Six[(M + 1):(2 * M)] are
for non-mixture U ; if error_type = "mix" and there are only random effects
(i.e., length(corr.x) = 0), use Six[1:M] = rep(list(NULL), M) so that
Six[M + 1] or Six[(M + 1):(2 * M)] describes the non-mixture U ;
Six[[p]][[j]] is a vector of sixth cumulant correction values to aid in finding a
valid PDF for Xcont(pj), the j-th continuous non-mixture covariate for outcome
Yp; the last vector in Six[[p]] is for Ep (if error_type = "non_mix"); use
Six[[p]][[j]] = NULL if no correction desired forXcont(pj); use Six[[p]] = NULL
if no correction desired for any continuous non-mixture covariate or error term
in equation p
Six[[M + p]][[j]] is a vector of sixth cumulant correction values to aid in
finding a valid PDF for U(pj), the j-th non-mixture random effect for outcome
Yp; use Six[[M + p]][[j]] = NULL if no correction desired for U(pj); use
Six[[M + p]] = NULL if no correction desired for any continuous non-mixture
random effect in equation p
keep Six = list() if no corrections desired for all equations or if method = "Fleishman"

mix_pis list of length M, M + 1 or 2 * M, where mix_pis[1:M] are for Xcont, E (if
error_type = "mix") and mix_pis[M + 1] or mix_pis[(M + 1):(2 * M)]
are for mixture U ; use mix_pis[[p]] = NULL if equation p has no continuous
mixture terms if error_type = "non_mix" and there are only random effects
(i.e., length(corr.x) = 0), use mix_pis[1:M] = NULL so that mix_pis[M + 1]
or mix_pis[(M + 1):(2 * M)] describes the mixture U ;
mix_pis[[p]][[j]] is a vector of mixing probabilities of the component distri-
butions for Xmix(pj), the j-th mixture covariate for outcome Yp; the last vector
in mix_pis[[p]] is for Ep (if error_type = "mix"); components should be
ordered as in corr.x

mix_pis[[M + p]][[j]] is a vector of mixing probabilities of the component
distributions for U(pj), the j-th random effect with a mixture distribution for
outcome Yp; order is 1st random intercept (if rand.int = "mix"), 2nd ran-
dom time slope (if rand.tsl = "mix"), 3rd other random slopes with mixture
distributions; components should be ordered as in corr.u

mix_mus list of same length and order as mix_pis;
mix_mus[[p]][[j]] is a vector of means of the component distributions for
Xmix(pj), the last vector in mix_mus[[p]] is for Ep (if error_type = "mix")
mix_mus[[p]][[j]] is a vector of means of the component distributions for
Umix(pj)

mix_sigmas list of same length and order as mix_pis;
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mix_sigmas[[p]][[j]] is a vector of standard deviations of the component
distributions for Xmix(pj), the last vector in mix_sigmas[[p]] is for Ep (if
error_type = "mix")
mix_sigmas[[p]][[j]] is a vector of standard deviations of the component
distributions for Umix(pj)

mix_skews list of same length and order as mix_pis;
mix_skews[[p]][[j]] is a vector of skew values of the component distribu-
tions forXmix(pj), the last vector in mix_skews[[p]] is forEp (if error_type = "mix")
mix_skews[[p]][[j]] is a vector of skew values of the component distribu-
tions for Umix(pj)

mix_skurts list of same length and order as mix_pis;
mix_skurts[[p]][[j]] is a vector of standardized kurtoses of the component
distributions for Xmix(pj), the last vector in mix_skurts[[p]] is for Ep (if
error_type = "mix")
mix_skurts[[p]][[j]] is a vector of standardized kurtoses of the component
distributions for Umix(pj)

mix_fifths list of same length and order as mix_pis; not necessary for method = "Fleishman";
mix_fifths[[p]][[j]] is a vector of standardized fifth cumulants of the com-
ponent distributions for Xmix(pj), the last vector in mix_fifths[[p]] is for Ep

(if error_type = "mix")
mix_fifths[[p]][[j]] is a vector of standardized fifth cumulants of the com-
ponent distributions for Umix(pj)

mix_sixths list of same length and order as mix_pis; not necessary for method = "Fleishman";
mix_sixths[[p]][[j]] is a vector of standardized sixth cumulants of the com-
ponent distributions for Xmix(pj), the last vector in mix_sixths[[p]] is for Ep

(if error_type = "mix")
mix_sixths[[p]][[j]] is a vector of standardized sixth cumulants of the com-
ponent distributions for Umix(pj)

mix_Six a list of same length and order as mix_pis; keep mix_Six = list() if no
corrections desired for all equations or if method = "Fleishman"

p-th component of mix_Six[1:M] is a list of length equal to the total number
of component distributions for the Xmix(p) and Ep (if error_type = "mix");
mix_Six[[p]][[j]] is a vector of sixth cumulant corrections for the j-th com-
ponent distribution (i.e., if there are 2 continuous mixture independent variables
for Yp, where Xmix(p1) has 2 components and Xmix(p2) has 3 components,
then length(mix_Six[[p]]) = 5 and mix_Six[[p]][[3]] would correspond
to the 1st component of Xmix(p2)); use mix_Six[[p]][[j]] = NULL if no cor-
rection desired for that component; use mix_Six[[p]] = NULL if no correction
desired for any component of Xmix(p) and Ep

q-th component of mix_Six[M + 1] or mix_Six[(M + 1):(2 * M)] is a list
of length equal to the total number of component distributions for the Umix(q);
mix_Six[[q]][[j]] is a vector of sixth cumulant corrections for the j-th com-
ponent distribution; use mix_Six[[q]][[j]] = NULL if no correction desired
for that component; use mix_Six[[q]] = NULL if no correction desired for any
component of Umix(q)
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marginal a list of length M, with the p-th component a list of cumulative probabilities for
the ordinal variables associated with outcome Yp (use marginal[[p]] = NULL
if outcome Yp has no ordinal variables); marginal[[p]][[j]] is a vector of the
cumulative probabilities defining the marginal distribution of Xord(pj), the j-th
ordinal variable for outcome Yp; if the variable can take r values, the vector will
contain r - 1 probabilities (the r-th is assumed to be 1); for binary variables, the
probability is the probability of the 1st category, which has the smaller support
value; length(marginal[[p]]) can differ across outcomes; the order should
be the same as in corr.x

support a list of length M, with the p-th component a list of support values for the ordinal
variables associated with outcome Yp; use support[[p]] = NULL if outcome
Yp has no ordinal variables; support[[p]][[j]] is a vector of the support val-
ues defining the marginal distribution of Xord(pj), the j-th ordinal variable for
outcome Yp; if not provided, the default for r categories is 1, ..., r

lam list of length M, p-th component a vector of lambda (means > 0) values for Pois-
son variables for outcome Yp (see stats::dpois); order is 1st regular Poisson
and 2nd zero-inflated Poisson; use lam[[p]] = NULL if outcome Yp has no Pois-
son variables; length(lam[[p]]) can differ across outcomes; the order should
be the same as in corr.x

p_zip a list of vectors of probabilities of structural zeros (not including zeros from the
Poisson distribution) for the zero-inflated Poisson variables (see VGAM::dzipois);
if p_zip = 0, Ypois has a regular Poisson distribution; if p_zip is in (0, 1), Ypois
has a zero-inflated Poisson distribution; if p_zip is in (-(exp(lam) - 1)^(-1), 0),
Ypois has a zero-deflated Poisson distribution and p_zip is not a probability; if
p_zip = -(exp(lam) - 1)^(-1), Ypois has a positive-Poisson distribution (see
VGAM::dpospois); order is 1st regular Poisson and 2nd zero-inflated Poisson; if
a single number, all Poisson variables given this value; if a vector of length M,
all Poisson variables in equation p given p_zip[p]; otherwise, missing values
are set to 0 and ordered 1st

pois_eps list of length M, p-th component a vector of length lam[[p]] containing cumu-
lative probability truncation values used to calculate intermediate correlations
involving Poisson variables; order is 1st regular Poisson and 2nd zero-inflated
Poisson; if a single number, all Poisson variables given this value; if a vector
of length M, all Poisson variables in equation p given pois_eps[p]; otherwise,
missing values are set to 0.0001 and ordered 1st

size list of length M, p-th component a vector of size parameters for the Negative
Binomial variables for outcome Yp (see stats::dnbinom); order is 1st regular
NB and 2nd zero-inflated NB; use size[[p]] = NULL if outcome Yp has no
Negative Binomial variables; length(size[[p]]) can differ across outcomes;
the order should be the same as in corr.x

prob list of length M, p-th component a vector of success probabilities for the Negative
Binomial variables for outcome Yp (see stats::dnbinom); order is 1st regular
NB and 2nd zero-inflated NB; use prob[[p]] = NULL if outcome Yp has no
Negative Binomial variables; length(prob[[p]]) can differ across outcomes;
the order should be the same as in corr.x

mu list of length M, p-th component a vector of mean values for the Negative Bino-
mial variables for outcome Yp (see stats::dnbinom); order is 1st regular NB



checkpar 17

and 2nd zero-inflated NB; use mu[[p]] = NULL if outcome Yp has no Negative
Binomial variables; length(mu[[p]]) can differ across outcomes; the order
should be the same as in corr.x; for zero-inflated NB variables, this refers to
the mean of the NB distribution (see VGAM::dzinegbin) (*Note: either prob or
mu should be supplied for all Negative Binomial variables, not a mixture)

p_zinb a vector of probabilities of structural zeros (not including zeros from the NB dis-
tribution) for the zero-inflated NB variables (see VGAM::dzinegbin); if p_zinb
= 0, Ynb has a regular NB distribution; if p_zinb is in (-prob^size/(1 - prob^size),
0), Ynb has a zero-deflated NB distribution and p_zinb is not a probability; if
p_zinb = -prob^size/(1 - prob^size), Ynb has a positive-NB distribution
(see VGAM::dposnegbin); order is 1st regular NB and 2nd zero-inflated NB; if
a single number, all NB variables given this value; if a vector of length M, all NB
variables in equation p given p_zinb[p]; otherwise, missing values are set to 0
and ordered 1st

nb_eps list of length M, p-th component a vector of length size[[p]] containing cumu-
lative probability truncation values used to calculate intermediate correlations
involving Negative Binomial variables; order is 1st regular NB and 2nd zero-
inflated NB; if a single number, all NB variables given this value; if a vector of
length M, all NB variables in equation p given nb_eps[p]; otherwise, missing
values are set to 0.0001 and ordered 1st

corr.x list of length M, each component a list of length M; corr.x[[p]][[q]] is ma-
trix of correlations for independent variables in equations p (X(pj) for out-
come Yp) and q (X(qj) for outcome Yq); order: 1st ordinal (same order as in
marginal), 2nd continuous non-mixture (same order as in skews), 3rd com-
ponents of continuous mixture (same order as in mix_pis), 4th regular Pois-
son, 5th zero-inflated Poisson (same order as in lam), 6th regular NB, and 7th
zero-inflated NB (same order as in size); if p = q, corr.x[[p]][[q]] is a
correlation matrix with nrow(corr.x[[p]][[q]]) = # X(pj) for outcome Yp;
if p != q, corr.x[[p]][[q]] is a non-symmetric matrix of correlations where
rows correspond to covariates for Yp so that nrow(corr.x[[p]][[q]]) = #
X(pj) for outcome Yp and columns correspond to covariates for Yq so that
ncol(corr.x[[p]][[q]]) = #X(qj) for outcome Yq; use corr.x[[p]][[q]] = NULL
if equation q has no X(qj); use corr.x[[p]] = NULL if equation p has no X(pj)

corr.yx input for nonnormsys only; a list of length M, where the p-th component is a 1
row matrix of correlations between Yp and X(pj); if there are mixture variables
and the betas are desired in terms of these (and not the components), then
corr.yx should be specified in terms of correlations between outcomes and
non-mixture or mixture variables, and the number of columns of the matrices
of corr.yx should not match the dimensions of the matrices in corr.x; if the
betas are desired in terms of the components, then corr.yx should be specified
in terms of correlations between outcomes and non-mixture or components of
mixture variables, and the number of columns of the matrices of corr.yx should
match the dimensions of the matrices in corr.x; use corr.yx[[p]] = NULL if
equation p has no X(pj)

corr.e correlation matrix for continuous non-mixture or components of mixture error
terms

same.var either a vector or a matrix; if a vector, same.var includes column numbers of
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corr.x[[1]][[1]] corresponding to independent variables that should be iden-
tical across equations; these terms must have the same indices for all p = 1, ..., M;
i.e., if the 1st ordinal variable represents sex which should be the same for each
equation, then same.var[1] = 1 since ordinal variables are 1st in corr.x[[1]][[1]]
and sex is the 1st ordinal variable, and the 1st term for all other outcomes must
also be sex; if a matrix, columns 1 and 2 are outcome p and column index in
corr.x[[p]][[p]] for 1st instance of variable, columns 3 and 4 are outcome q
and column index in corr.x[[q]][[q]] for subsequent instances of variable;
i.e., if 1st term for all outcomes is sex and M = 3, then same.var = matrix(c(1,
1, 2, 1, 1, 1, 3, 1), 2, 4, byrow = TRUE); the independent variable in-
dex corresponds to ordinal, continuous non-mixture, component of continuous
mixture, Poisson, or NB variable

subj.var matrix where 1st column is outcome index (p = 1, ..., M), 2nd column
is independent variable index corresponding to covariate which is a a subject-
level term (not including time), including time-varying covariates; the indepen-
dent variable index corresponds to ordinal, continuous non-mixture, continuous
mixture (not mixture component), Poisson, or NB variable; assumes all other
variables are group-level terms; these subject-level terms are used to form inter-
actions with the group level terms

int.var matrix where 1st column is outcome index (p = 1, ..., M), 2nd and 3rd
columns are indices corresponding to independent variables to form interactions
between; this includes all interactions that are not accounted for by a subject-
group level interaction (as indicated by subj.var) or by a time-covariate in-
teraction (as indicated by tint.var); ex: 1, 2, 3 indicates that for outcome 1,
the 2nd and 3rd independent variables form an interaction term; the indepen-
dent variable index corresponds to ordinal, continuous non-mixture, continuous
mixture (not mixture component), Poisson, or NB variable

tint.var matrix where 1st column is outcome index (p = 1, ..., M), 2nd column is in-
dex of independent variable to form interaction with time; if tint.var = NULL
or no X(pj) are indicated for outcome Yp, this includes all group-level variables
(variables not indicated as subject-level variables in subj.var), else includes
only terms indicated by 2nd column (i.e., in order to include subject-level vari-
ables); ex: 1, 1 indicates that for outcome 1, the 1st independent variable has
an interaction with time; the independent variable index corresponds to ordinal,
continuous non-mixture, continuous mixture (not mixture component), Poisson,
or NB variable

betas.0 vector of length M containing intercepts, if NULL all set equal to 0; if length 1, all
intercepts set to betas.0

betas list of length M, p-th component a vector of coefficients for outcome Yp, includ-
ing group and subject-level terms; order is order of variables in corr.x[[p]][[p]];
if betas = list(), all set to 0 so that all Y only have intercept and/or interac-
tion terms plus error terms; if all outcomes have the same betas, use list of length
1; if Yp only has intercept and/or interaction terms, set betas[[p]] = NULL;
if there are continuous mixture variables, beta is for mixture variable (not for
components)

betas.subj list of length M, p-th component a vector of coefficients for interaction terms
between group-level terms and subject-level terms given in subj.var; order is
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the same order as given in subj.var; if all outcomes have the same betas, use list
of length 1; if Yp only has group-level terms, set betas.subj[[p]] = NULL;
if there are continuous mixture variables, beta is for mixture variable (not for
components)

betas.int list of length M, p-th component a vector of coefficients for interaction terms in-
dicated in int.var; order is the same order as given in int.var; if all outcomes
have the same betas, use list of length 1; if Yp has none, set betas.int[[p]] = NULL;
if there are continuous mixture variables, beta is for mixture variable (not for
components)

betas.t vector of length M of coefficients for time terms, if NULL all set equal to 1; if
length 1, all intercepts set to betas.t

betas.tint list of length M, p-th component a vector of coefficients for interaction terms indi-
cated in tint.var; order is the same order as given in tint.var; if all outcomes
have the same betas, use list of length 1; if Yp has none, set betas.tint[[p]] = NULL;
if there are continuous mixture variables, beta is for mixture variable (not for
components)

rand.int "none" (default) if no random intercept term for all outcomes, "non_mix" if
all random intercepts have a continuous non-mixture distribution, "mix" if all
random intercepts have a continuous mixture distribution; also can be a vector
of length M containing a combination (i.e., c("non_mix", "mix", "none") if
the 1st has a non-mixture distribution, the 2nd has a mixture distribution, and
3rd outcome has no random intercept)

rand.tsl "none" (default) if no random slope for time for all outcomes, "non_mix" if
all random time slopes have a continuous non-mixture distribution, "mix" if all
random time slopes have a continuous mixture distribution; also can be a vector
of length M as in rand.int

rand.var matrix where 1st column is outcome index (p = 1, ..., M), 2nd column is
independent variable index corresponding to covariate to assign random effect
to (not including the random intercept or time slope if present); the independent
variable index corresponds to ordinal, continuous non-mixture, continuous mix-
ture (not mixture component), Poisson, or NB variable; order is 1st continuous
non-mixture and 2nd continuous mixture random effects; note that the order of
the rows corresponds to the order of the random effects in corr.u not the or-
der of the independent variable so that a continuous mixture covariate with a
non-mixture random effect would be ordered before a continuous non-mixture
covariate with a mixture random effect (the 2nd column of rand.var indicates
the specific covariate)

corr.u if the random effects are the same variables across equations, a matrix of cor-
relations for U ; if the random effects are different variables across equations, a
list of length M, each component a list of length M; corr.u[[p]][[q]] is ma-
trix of correlations for random effects in equations p (U(pj) for outcome Yp)
and q (U(qj) for outcome Yq); if p = q, corr.u[[p]][[q]] is a correlation
matrix with nrow(corr.u[[p]][[q]]) = # U(pj) for outcome Yp; if p != q,
corr.u[[p]][[q]] is a non-symmetric matrix of correlations where rows cor-
respond toU(pj) for Yp so that nrow(corr.u[[p]][[q]]) = #U(pj) for outcome
Yp and columns correspond to U(qj) for Yq so that ncol(corr.u[[p]][[q]])
= # U(qj) for outcome Yq; the number of random effects for Yp is taken from
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nrow(corr.u[[p]][[1]]) so that if there should be random effects, there must
be entries for corr.u; use corr.u[[p]][[q]] = NULL if equation q has no
U(qj); use corr.u[[p]] = NULL if equation p has no U(pj);
correlations are specified in terms of components of mixture variables (if present);
order is 1st random intercept (if rand.int != "none"), 2nd random time slope
(if rand.tsl != "none"), 3rd other random slopes with non-mixture distribu-
tions, 4th other random slopes with mixture distributions

quiet if FALSE prints messages, if TRUE suppresses messages

Value

TRUE if all inputs are correct, else it will stop with a correction message

References

Headrick TC, Beasley TM (2004). A Method for Simulating Correlated Non-Normal Systems of
Linear Statistical Equations. Communications in Statistics - Simulation and Computation, 33(1).
doi: 10.1081/SAC120028431

See Also

nonnormsys, corrsys, corrsys2

Examples

# Example: system of three equations for 2 independent variables, where each
# error term has unit variance, from Headrick & Beasley (2002)
# Y_1 = beta_10 + beta_11 * X_11 + beta_12 * X_12 + sigma_1 * e_1
# Y_2 = beta_20 + beta_21 * X_21 + beta_22 * X_22 + sigma_2 * e_2
# Y_3 = beta_30 + beta_31 * X_31 + beta_32 * X_32 + sigma_3 * e_3
# X_11 = X_21 = X_31 = Exponential(2)
# X_12 = X_22 = X_32 = Laplace(0, 1)
# e_1 = e_2 = e_3 = Cauchy(0, 1)
M <- 3
Stcum1 <- calc_theory("Exponential", 2)
Stcum2 <- calc_theory("Laplace", c(0, 1))
Stcum3 <- c(0, 1, 0, 25, 0, 1500) # taken from paper
means <- lapply(seq_len(M), function(x) c(0, 0, 0))
vars <- lapply(seq_len(M), function(x) c(1, 1, 1))
skews <- lapply(seq_len(M), function(x) c(Stcum1[3], Stcum2[3], Stcum3[3]))
skurts <- lapply(seq_len(M), function(x) c(Stcum1[4], Stcum2[4], Stcum3[4]))
fifths <- lapply(seq_len(M), function(x) c(Stcum1[5], Stcum2[5], Stcum3[5]))
sixths <- lapply(seq_len(M), function(x) c(Stcum1[6], Stcum2[6], Stcum3[6]))
corr.yx <- list(matrix(c(0.4, 0.4), 1), matrix(c(0.5, 0.5), 1),

matrix(c(0.6, 0.6), 1))
corr.x <- list()
corr.x[[1]] <- corr.x[[2]] <- corr.x[[3]] <- list()
corr.x[[1]][[1]] <- matrix(c(1, 0.1, 0.1, 1), 2, 2)
corr.x[[1]][[2]] <- matrix(c(0.1974318, 0.1859656, 0.1879483, 0.1858601),

2, 2, byrow = TRUE)
corr.x[[1]][[3]] <- matrix(c(0.2873190, 0.2589830, 0.2682057, 0.2589542),

http://doi.org/10.1081/SAC-120028431
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2, 2, byrow = TRUE)
corr.x[[2]][[1]] <- t(corr.x[[1]][[2]])
corr.x[[2]][[2]] <- matrix(c(1, 0.35, 0.35, 1), 2, 2)
corr.x[[2]][[3]] <- matrix(c(0.5723303, 0.4883054, 0.5004441, 0.4841808),

2, 2, byrow = TRUE)
corr.x[[3]][[1]] <- t(corr.x[[1]][[3]])
corr.x[[3]][[2]] <- t(corr.x[[2]][[3]])
corr.x[[3]][[3]] <- matrix(c(1, 0.7, 0.7, 1), 2, 2)
corr.e <- matrix(0.4, nrow = 3, ncol = 3)
diag(corr.e) <- 1
checkpar(M, "Polynomial", "non_mix", means, vars, skews,

skurts, fifths, sixths, corr.x = corr.x, corr.yx = corr.yx,
corr.e = corr.e, quiet = TRUE)

corrsys Generate Correlated Systems of Equations with Ordinal, Continuous,
and/or Count Variables: Correlation Method 1

Description

This function generates a correlated system of M equations representing a system of repeated mea-
sures at M time points. The equations may contain 1) ordinal (r ≥ 2 categories), continuous (normal,
non-normal, and mixture distributions), count (regular and zero-inflated, Poisson and Negative Bi-
nomial) independent variables X; 2) continuous error terms E; 3) a discrete time variable Time;
and 4) random effects U . The assumptions are that 1) there are at least 2 equations, 2) the in-
dependent variables, random effect terms, and error terms are uncorrelated, 3) each equation has
an error term, 4) all error terms have a continuous non-mixture distribution or all have a con-
tinuous mixture distribution, 5) all random effects are continuous, and 6) growth is linear (with
respect to time). The random effects may be a random intercept, a random slope for time, or a
random slope for any of the X variables. Continuous variables are simulated using either Fleish-
man’s third-order (method = "Fleishman", doi: 10.1007/BF02293811) or Headrick’s fifth-order
(method = "Polynomial", doi: 10.1016/S01679473(02)000725) power method transformation
(PMT). Simulation occurs at the component-level for continuous mixture distributions. The target
correlation matrix is specified in terms of correlations with components of continuous mixture vari-
ables. These components are transformed into the desired mixture variables using random multi-
nomial variables based on the mixing probabilities. The X terms can be the same across equations
(i.e., modeling sex or height) or may be time-varying covariates. The equations may contain differ-
ent numbers of X terms (i.e., a covariate could be missing for a given equation).

The outcomes Y are generated using a hierarchical linear models (HLM) approach, which allows
the data to be structured in at least two levels. Level-1 is the repeated measure (time or condition)
and other subject-level variables. Level-1 is nested within Level-2, which describes the average
of the outcome (the intercept) and growth (slope for time) as a function of group-level variables.
The first level captures the within-subject variation, while the second level describes the between-
subjects variability. Using a HLM provides a way to determine if: a) subjects differ at a specific
time point with respect to the dependent variable, b) growth rates differ across conditions, or c)
growth rates differ across subjects. Random effects describe deviation at the subject-level from the
average (fixed) effect described by the slope coefficients (betas). See the The Hierarchical Linear

http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
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Models Approach for a System of Correlated Equations with Multiple Variable Types vignette
for a description of the HLM model. The user can specify subject-level X terms, and each subject-
level X term is crossed with all group-level X terms. The equations may also contain interactions
between X variables. Interactions specified in int.var between two group-level covariates are
themselves considered group-level covariates and will be crossed with subject-level covariates. In-
teractions between two subject-level covariates are considered subject-level covariates and will be
crossed with group-level covariates. Since Time is a subject-level variable, each group-level term is
crossed with Time unless otherwise specified.

Random effects may be added for the intercept, time slope, or effects of any of the covariates.
The type of random intercept and time slope (i.e., non-mixture or mixture) is specified in rand.int
and rand.tsl. This type may vary by equation. The random effects for independent variables are
specified in rand.var and may also contain a combination of non-mixture and mixture continuous
distributions. If the parameter lists are of length M + 1, the random effects are the same variables
across equations and the correlation for the effects corr.u is a matrix. If the parameter lists are of
length 2 * M, the random effects are different variables across equations and the correlation for the
effects corr.u is a list.

The independent variables, interactions, Time effect, random effects, and error terms are summed
together to produce the outcomes Y . The beta coefficients may be the same or differ across equa-
tions. The user specifies the betas for the independent variables in betas, for the interactions
between two group-level or two subject-level covariates in betas.int, for the group-subject level
interactions in betas.subj, and for the Time interactions in betas.tint. Setting a coefficient to 0
will eliminate that term. The user also provides the correlations 1) between E terms; 2) between X
variables within each outcome Yp, p = 1, ..., M, and between outcome pairs; and 3) between U
variables within each outcome Yp, p = 1, ..., M, and between outcome pairs. The order of the
independent variables in corr.x must be 1st ordinal (same order as in marginal), 2nd continuous
non-mixture (same order as in skews), 3rd components of continuous mixture (same order as in
mix_pis), 4th regular Poisson, 5th zero-inflated Poisson (same order as in lam), 6th regular NB,
and 7th zero-inflated NB (same order as in size). The order of the random effects in corr.u must
be 1st random intercept, 2nd random time slope, 3rd continuous non-mixture random effects, and
4th components of continuous mixture random effects.

The variables are generated from multivariate normal variables with intermediate correlations cal-
culated using intercorr, which employs correlation method 1. See SimCorrMix for a description
of the correlation method and the techniques used to generate each variable type. The order of the
variables returned is 1st covariates X (as specified in corr.x), 2nd group-group or subject-subject
interactions (ordered as in int.var), 3rd subject-group interactions (1st by subject-level variable as
specified in subj.var, 2nd by covariate as specified in corr.x), and 4th time interactions (either as
specified in corr.x with group-level covariates or in tint.var).

This function contains no parameter checks in order to decrease simulation time. That should be
done first using checkpar. Summaries of the system can be obtained using summary_sys. The
Correlated Systems of Statistical Equations with Multiple Variable Types demonstrates exam-
ples.

Usage

corrsys(n = 10000, M = NULL, Time = NULL, method = c("Fleishman",
"Polynomial"), error_type = c("non_mix", "mix"), means = list(),
vars = list(), skews = list(), skurts = list(), fifths = list(),
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sixths = list(), Six = list(), mix_pis = list(), mix_mus = list(),
mix_sigmas = list(), mix_skews = list(), mix_skurts = list(),
mix_fifths = list(), mix_sixths = list(), mix_Six = list(),
marginal = list(), support = list(), lam = list(), p_zip = list(),
size = list(), prob = list(), mu = list(), p_zinb = list(),
corr.x = list(), corr.e = NULL, same.var = NULL, subj.var = NULL,
int.var = NULL, tint.var = NULL, betas.0 = NULL, betas = list(),
betas.subj = list(), betas.int = list(), betas.t = NULL,
betas.tint = list(), rand.int = c("none", "non_mix", "mix"),
rand.tsl = c("none", "non_mix", "mix"), rand.var = NULL,
corr.u = list(), seed = 1234, use.nearPD = TRUE, eigmin = 0,
adjgrad = FALSE, B1 = NULL, tau = 0.5, tol = 0.1, steps = 100,
msteps = 10, nrand = 1e+05, errorloop = FALSE, epsilon = 0.001,
maxit = 1000, quiet = FALSE)

Arguments

n the sample size (i.e. the length of each simulated variable; default = 10000)

M the number of dependent variables Y (outcomes); equivalently, the number of
equations in the system

Time a vector of values to use for time; each subject receives the same time value; if
NULL, Time = 1:M

method the PMT method used to generate all continuous variables, including indepen-
dent variables (covariates), error terms, and random effects; "Fleishman" uses
Fleishman’s third-order polynomial transformation and "Polynomial" uses Head-
rick’s fifth-order transformation

error_type "non_mix" if all error terms have continuous non-mixture distributions, "mix" if
all error terms have continuous mixture distributions

means if no random effects, a list of length M where means[[p]] contains a vector of
means for the continuous independent variables in equation p with non-mixture
(Xcont) or mixture (Xmix) distributions and for the error terms (E); order in
vector is Xcont, Xmix, E

if there are random effects, a list of length M + 1 if the effects are the same across
equations or 2 * M if they differ; where means[M + 1] or means[(M + 1):(2 * M)]
are vectors of means for all random effects with continuous non-mixture or mix-
ture distributions; order in vector is 1st random interceptU0 (if rand.int != "none"),
2nd random time slope U1 (if rand.tsl != "none"), 3rd other random slopes
with non-mixture distributions Ucont, 4th other random slopes with mixture dis-
tributions Umix

vars a list of same length and order as means containing vectors of variances for the
continuous variables, error terms, and any random effects

skews if no random effects, a list of length M where skews[[p]] contains a vector of
skew values for the continuous independent variables in equation p with non-
mixture (Xcont) distributions and for E if error_type = "non_mix"; order in
vector is Xcont, E

if there are random effects, a list of length M + 1 if the effects are the same across
equations or 2 * M if they differ; where skews[M + 1] or skews[(M + 1):(2 * M)]
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are vectors of skew values for all random effects with continuous non-mixture
distributions; order in vector is 1st random interceptU0 (if rand.int = "non_mix"),
2nd random time slopeU1 (if rand.tsl = "non_mix"), 3rd other random slopes
with non-mixture distributions Ucont

skurts a list of same length and order as skews containing vectors of standardized kur-
toses (kurtosis - 3) for the continuous variables, error terms, and any random
effects with non-mixture distributions

fifths a list of same length and order as skews containing vectors of standardized fifth
cumulants for the continuous variables, error terms, and any random effects with
non-mixture distributions; not necessary for method = "Fleishman"

sixths a list of same length and order as skews containing vectors of standardized sixth
cumulants for the continuous variables, error terms, and any random effects with
non-mixture distributions; not necessary for method = "Fleishman"

Six a list of length M, M + 1, or 2 * M, where Six[1:M] are for Xcont, E (if
error_type = "non_mix") and Six[M + 1] or Six[(M + 1):(2 * M)] are
for non-mixture U ; if error_type = "mix" and there are only random effects
(i.e., length(corr.x) = 0), use Six[1:M] = rep(list(NULL), M) so that
Six[M + 1] or Six[(M + 1):(2 * M)] describes the non-mixture U ;
Six[[p]][[j]] is a vector of sixth cumulant correction values to aid in finding a
valid PDF for Xcont(pj), the j-th continuous non-mixture covariate for outcome
Yp; the last vector in Six[[p]] is for Ep (if error_type = "non_mix"); use
Six[[p]][[j]] = NULL if no correction desired forXcont(pj); use Six[[p]] = NULL
if no correction desired for any continuous non-mixture covariate or error term
in equation p
Six[[M + p]][[j]] is a vector of sixth cumulant correction values to aid in
finding a valid PDF for U(pj), the j-th non-mixture random effect for outcome
Yp; use Six[[M + p]][[j]] = NULL if no correction desired for U(pj); use
Six[[M + p]] = NULL if no correction desired for any continuous non-mixture
random effect in equation p
keep Six = list() if no corrections desired for all equations or if method = "Fleishman"

mix_pis list of length M, M + 1 or 2 * M, where mix_pis[1:M] are for Xcont, E (if
error_type = "mix") and mix_pis[M + 1] or mix_pis[(M + 1):(2 * M)]
are for mixture U ; use mix_pis[[p]] = NULL if equation p has no continuous
mixture terms if error_type = "non_mix" and there are only random effects
(i.e., length(corr.x) = 0), use mix_pis[1:M] = NULL so that mix_pis[M + 1]
or mix_pis[(M + 1):(2 * M)] describes the mixture U ;
mix_pis[[p]][[j]] is a vector of mixing probabilities of the component distri-
butions for Xmix(pj), the j-th mixture covariate for outcome Yp; the last vector
in mix_pis[[p]] is for Ep (if error_type = "mix"); components should be
ordered as in corr.x

mix_pis[[M + p]][[j]] is a vector of mixing probabilities of the component
distributions for U(pj), the j-th random effect with a mixture distribution for
outcome Yp; order is 1st random intercept (if rand.int = "mix"), 2nd ran-
dom time slope (if rand.tsl = "mix"), 3rd other random slopes with mixture
distributions; components should be ordered as in corr.u

mix_mus list of same length and order as mix_pis;
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mix_mus[[p]][[j]] is a vector of means of the component distributions for
Xmix(pj), the last vector in mix_mus[[p]] is for Ep (if error_type = "mix")
mix_mus[[p]][[j]] is a vector of means of the component distributions for
Umix(pj)

mix_sigmas list of same length and order as mix_pis;
mix_sigmas[[p]][[j]] is a vector of standard deviations of the component
distributions for Xmix(pj), the last vector in mix_sigmas[[p]] is for Ep (if
error_type = "mix")
mix_sigmas[[p]][[j]] is a vector of standard deviations of the component
distributions for Umix(pj)

mix_skews list of same length and order as mix_pis;
mix_skews[[p]][[j]] is a vector of skew values of the component distribu-
tions forXmix(pj), the last vector in mix_skews[[p]] is forEp (if error_type = "mix")
mix_skews[[p]][[j]] is a vector of skew values of the component distribu-
tions for Umix(pj)

mix_skurts list of same length and order as mix_pis;
mix_skurts[[p]][[j]] is a vector of standardized kurtoses of the component
distributions for Xmix(pj), the last vector in mix_skurts[[p]] is for Ep (if
error_type = "mix")
mix_skurts[[p]][[j]] is a vector of standardized kurtoses of the component
distributions for Umix(pj)

mix_fifths list of same length and order as mix_pis; not necessary for method = "Fleishman";
mix_fifths[[p]][[j]] is a vector of standardized fifth cumulants of the com-
ponent distributions for Xmix(pj), the last vector in mix_fifths[[p]] is for Ep

(if error_type = "mix")
mix_fifths[[p]][[j]] is a vector of standardized fifth cumulants of the com-
ponent distributions for Umix(pj)

mix_sixths list of same length and order as mix_pis; not necessary for method = "Fleishman";
mix_sixths[[p]][[j]] is a vector of standardized sixth cumulants of the com-
ponent distributions for Xmix(pj), the last vector in mix_sixths[[p]] is for Ep

(if error_type = "mix")
mix_sixths[[p]][[j]] is a vector of standardized sixth cumulants of the com-
ponent distributions for Umix(pj)

mix_Six a list of same length and order as mix_pis; keep mix_Six = list() if no
corrections desired for all equations or if method = "Fleishman"

p-th component of mix_Six[1:M] is a list of length equal to the total number
of component distributions for the Xmix(p) and Ep (if error_type = "mix");
mix_Six[[p]][[j]] is a vector of sixth cumulant corrections for the j-th com-
ponent distribution (i.e., if there are 2 continuous mixture independent variables
for Yp, where Xmix(p1) has 2 components and Xmix(p2) has 3 components,
then length(mix_Six[[p]]) = 5 and mix_Six[[p]][[3]] would correspond
to the 1st component of Xmix(p2)); use mix_Six[[p]][[j]] = NULL if no cor-
rection desired for that component; use mix_Six[[p]] = NULL if no correction
desired for any component of Xmix(p) and Ep
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q-th component of mix_Six[M + 1] or mix_Six[(M + 1):(2 * M)] is a list
of length equal to the total number of component distributions for the Umix(q);
mix_Six[[q]][[j]] is a vector of sixth cumulant corrections for the j-th com-
ponent distribution; use mix_Six[[q]][[j]] = NULL if no correction desired
for that component; use mix_Six[[q]] = NULL if no correction desired for any
component of Umix(q)

marginal a list of length M, with the p-th component a list of cumulative probabilities for
the ordinal variables associated with outcome Yp (use marginal[[p]] = NULL
if outcome Yp has no ordinal variables); marginal[[p]][[j]] is a vector of the
cumulative probabilities defining the marginal distribution of Xord(pj), the j-th
ordinal variable for outcome Yp; if the variable can take r values, the vector will
contain r - 1 probabilities (the r-th is assumed to be 1); for binary variables, the
probability is the probability of the 1st category, which has the smaller support
value; length(marginal[[p]]) can differ across outcomes; the order should
be the same as in corr.x

support a list of length M, with the p-th component a list of support values for the ordinal
variables associated with outcome Yp; use support[[p]] = NULL if outcome
Yp has no ordinal variables; support[[p]][[j]] is a vector of the support val-
ues defining the marginal distribution of Xord(pj), the j-th ordinal variable for
outcome Yp; if not provided, the default for r categories is 1, ..., r

lam list of length M, p-th component a vector of lambda (means > 0) values for Pois-
son variables for outcome Yp (see stats::dpois); order is 1st regular Poisson
and 2nd zero-inflated Poisson; use lam[[p]] = NULL if outcome Yp has no Pois-
son variables; length(lam[[p]]) can differ across outcomes; the order should
be the same as in corr.x

p_zip a list of vectors of probabilities of structural zeros (not including zeros from the
Poisson distribution) for the zero-inflated Poisson variables (see VGAM::dzipois);
if p_zip = 0, Ypois has a regular Poisson distribution; if p_zip is in (0, 1), Ypois
has a zero-inflated Poisson distribution; if p_zip is in (-(exp(lam) - 1)^(-1), 0),
Ypois has a zero-deflated Poisson distribution and p_zip is not a probability; if
p_zip = -(exp(lam) - 1)^(-1), Ypois has a positive-Poisson distribution (see
VGAM::dpospois); order is 1st regular Poisson and 2nd zero-inflated Poisson; if
a single number, all Poisson variables given this value; if a vector of length M,
all Poisson variables in equation p given p_zip[p]; otherwise, missing values
are set to 0 and ordered 1st

size list of length M, p-th component a vector of size parameters for the Negative
Binomial variables for outcome Yp (see stats::dnbinom); order is 1st regular
NB and 2nd zero-inflated NB; use size[[p]] = NULL if outcome Yp has no
Negative Binomial variables; length(size[[p]]) can differ across outcomes;
the order should be the same as in corr.x

prob list of length M, p-th component a vector of success probabilities for the Negative
Binomial variables for outcome Yp (see stats::dnbinom); order is 1st regular
NB and 2nd zero-inflated NB; use prob[[p]] = NULL if outcome Yp has no
Negative Binomial variables; length(prob[[p]]) can differ across outcomes;
the order should be the same as in corr.x

mu list of length M, p-th component a vector of mean values for the Negative Bino-
mial variables for outcome Yp (see stats::dnbinom); order is 1st regular NB
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and 2nd zero-inflated NB; use mu[[p]] = NULL if outcome Yp has no Negative
Binomial variables; length(mu[[p]]) can differ across outcomes; the order
should be the same as in corr.x; for zero-inflated NB variables, this refers to
the mean of the NB distribution (see VGAM::dzinegbin) (*Note: either prob or
mu should be supplied for all Negative Binomial variables, not a mixture)

p_zinb a vector of probabilities of structural zeros (not including zeros from the NB dis-
tribution) for the zero-inflated NB variables (see VGAM::dzinegbin); if p_zinb
= 0, Ynb has a regular NB distribution; if p_zinb is in (-prob^size/(1 - prob^size),
0), Ynb has a zero-deflated NB distribution and p_zinb is not a probability; if
p_zinb = -prob^size/(1 - prob^size), Ynb has a positive-NB distribution
(see VGAM::dposnegbin); order is 1st regular NB and 2nd zero-inflated NB; if
a single number, all NB variables given this value; if a vector of length M, all NB
variables in equation p given p_zinb[p]; otherwise, missing values are set to 0
and ordered 1st

corr.x list of length M, each component a list of length M; corr.x[[p]][[q]] is ma-
trix of correlations for independent variables in equations p (X(pj) for out-
come Yp) and q (X(qj) for outcome Yq); order: 1st ordinal (same order as in
marginal), 2nd continuous non-mixture (same order as in skews), 3rd com-
ponents of continuous mixture (same order as in mix_pis), 4th regular Pois-
son, 5th zero-inflated Poisson (same order as in lam), 6th regular NB, and 7th
zero-inflated NB (same order as in size); if p = q, corr.x[[p]][[q]] is a
correlation matrix with nrow(corr.x[[p]][[q]]) = # X(pj) for outcome Yp;
if p != q, corr.x[[p]][[q]] is a non-symmetric matrix of correlations where
rows correspond to covariates for Yp so that nrow(corr.x[[p]][[q]]) = #
X(pj) for outcome Yp and columns correspond to covariates for Yq so that
ncol(corr.x[[p]][[q]]) = #X(qj) for outcome Yq; use corr.x[[p]][[q]] = NULL
if equation q has no X(qj); use corr.x[[p]] = NULL if equation p has no X(pj)

corr.e correlation matrix for continuous non-mixture or components of mixture error
terms

same.var either a vector or a matrix; if a vector, same.var includes column numbers of
corr.x[[1]][[1]] corresponding to independent variables that should be iden-
tical across equations; these terms must have the same indices for all p = 1, ..., M;
i.e., if the 1st ordinal variable represents sex which should be the same for each
equation, then same.var[1] = 1 since ordinal variables are 1st in corr.x[[1]][[1]]
and sex is the 1st ordinal variable, and the 1st term for all other outcomes must
also be sex; if a matrix, columns 1 and 2 are outcome p and column index in
corr.x[[p]][[p]] for 1st instance of variable, columns 3 and 4 are outcome q
and column index in corr.x[[q]][[q]] for subsequent instances of variable;
i.e., if 1st term for all outcomes is sex and M = 3, then same.var = matrix(c(1,
1, 2, 1, 1, 1, 3, 1), 2, 4, byrow = TRUE); the independent variable in-
dex corresponds to ordinal, continuous non-mixture, component of continuous
mixture, Poisson, or NB variable

subj.var matrix where 1st column is outcome index (p = 1, ..., M), 2nd column
is independent variable index corresponding to covariate which is a a subject-
level term (not including time), including time-varying covariates; the indepen-
dent variable index corresponds to ordinal, continuous non-mixture, continuous
mixture (not mixture component), Poisson, or NB variable; assumes all other
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variables are group-level terms; these subject-level terms are used to form inter-
actions with the group level terms

int.var matrix where 1st column is outcome index (p = 1, ..., M), 2nd and 3rd
columns are indices corresponding to two group-level or two subject-level in-
dependent variables to form interactions between; this includes all interactions
that are not accounted for by a subject-group level interaction (as indicated by
subj.var) or by a time-covariate interaction (as indicated by tint.var); ex: 1,
2, 3 indicates that for outcome 1, the 2nd and 3rd independent variables form
an interaction term; the independent variable index corresponds to ordinal, con-
tinuous non-mixture, continuous mixture (not mixture component), Poisson, or
NB variable

tint.var matrix where 1st column is outcome index (p = 1, ..., M), 2nd column is in-
dex of independent variable to form interaction with time; if tint.var = NULL
or noX(pj) are indicated for outcome Yp, all group-level variables (variables not
indicated as subject-level variables in subj.var) will be crossed with time, else
includes only terms indicated by 2nd column (i.e., in order to include subject-
level variables); ex: 1, 1 indicates that for outcome 1, the 1st independent vari-
able has an interaction with time; the independent variable index corresponds to
ordinal, continuous non-mixture, continuous mixture (not mixture component),
Poisson, or NB variable

betas.0 vector of length M containing intercepts, if NULL all set equal to 0; if length 1, all
intercepts set to betas.0

betas list of length M, p-th component a vector of coefficients for outcome Yp, includ-
ing group and subject-level terms; order is order of variables in corr.x[[p]][[p]];
if betas = list(), all set to 0 so that all Y only have intercept and/or interac-
tion terms plus error terms; if all outcomes have the same betas, use list of length
1; if Yp only has intercept and/or interaction terms, set betas[[p]] = NULL;
if there are continuous mixture variables, beta is for mixture variable (not for
components)

betas.subj list of length M, p-th component a vector of coefficients for interaction terms
between group-level terms and subject-level terms given in subj.var; order
is 1st by subject-level covariate as given in subj.var and 2nd by group-level
covariate as given in corr.x or an interaction between group-level terms; if all
outcomes have the same betas, use list of length 1; if Yp only has group-level
terms, set betas.subj[[p]] = NULL; since subject-subject interactions are
treated as subject-level variables, these will also be crossed with all group-level
variables and require coefficients; if there are continuous mixture variables, beta
is for mixture variable (not for components)

betas.int list of length M, p-th component a vector of coefficients for interaction terms in-
dicated in int.var; order is the same order as given in int.var; if all outcomes
have the same betas, use list of length 1; if Yp has none, set betas.int[[p]] = NULL;
if there are continuous mixture variables, beta is for mixture variable (not for
components)

betas.t vector of length M of coefficients for time terms, if NULL all set equal to 1; if
length 1, all intercepts set to betas.t

betas.tint list of length M, p-th component a vector of coefficients for all interactions
with time; this includes interactions with group-level covariates or terms in-
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dicated in tint.var; order is the same order as given in corr.x or tint.var;
if all outcomes have the same betas, use list of length 1; if Yp has none, set
betas.tint[[p]] = NULL; since group-group interactions are treated as group-
level variables, these will also be crossed with time (unless otherwise specified
for that outcome in tint.var) and require coefficients; if there are continuous
mixture variables, beta is for mixture variable (not for components)

rand.int "none" (default) if no random intercept term for all outcomes, "non_mix" if
all random intercepts have a continuous non-mixture distribution, "mix" if all
random intercepts have a continuous mixture distribution; also can be a vector
of length M containing a combination (i.e., c("non_mix", "mix", "none") if
the 1st has a non-mixture distribution, the 2nd has a mixture distribution, and
3rd outcome has no random intercept)

rand.tsl "none" (default) if no random slope for time for all outcomes, "non_mix" if
all random time slopes have a continuous non-mixture distribution, "mix" if all
random time slopes have a continuous mixture distribution; also can be a vector
of length M as in rand.int

rand.var matrix where 1st column is outcome index (p = 1, ..., M), 2nd column is
independent variable index corresponding to covariate to assign random effect
to (not including the random intercept or time slope if present); the independent
variable index corresponds to ordinal, continuous non-mixture, continuous mix-
ture (not mixture component), Poisson, or NB variable; order is 1st continuous
non-mixture and 2nd continuous mixture random effects; note that the order of
the rows corresponds to the order of the random effects in corr.u not the or-
der of the independent variable so that a continuous mixture covariate with a
non-mixture random effect would be ordered before a continuous non-mixture
covariate with a mixture random effect (the 2nd column of rand.var indicates
the specific covariate)

corr.u if the random effects are the same variables across equations, a matrix of cor-
relations for U ; if the random effects are different variables across equations, a
list of length M, each component a list of length M; corr.u[[p]][[q]] is ma-
trix of correlations for random effects in equations p (U(pj) for outcome Yp)
and q (U(qj) for outcome Yq); if p = q, corr.u[[p]][[q]] is a correlation
matrix with nrow(corr.u[[p]][[q]]) = # U(pj) for outcome Yp; if p != q,
corr.u[[p]][[q]] is a non-symmetric matrix of correlations where rows cor-
respond toU(pj) for Yp so that nrow(corr.u[[p]][[q]]) = #U(pj) for outcome
Yp and columns correspond to U(qj) for Yq so that ncol(corr.u[[p]][[q]])
= # U(qj) for outcome Yq; the number of random effects for Yp is taken from
nrow(corr.u[[p]][[1]]) so that if there should be random effects, there must
be entries for corr.u; use corr.u[[p]][[q]] = NULL if equation q has no
U(qj); use corr.u[[p]] = NULL if equation p has no U(pj);
correlations are specified in terms of components of mixture variables (if present);
order is 1st random intercept (if rand.int != "none"), 2nd random time slope
(if rand.tsl != "none"), 3rd other random slopes with non-mixture distribu-
tions, 4th other random slopes with mixture distributions

seed the seed value for random number generation (default = 1234)

use.nearPD TRUE to convert the overall intermediate correlation matrix formed by the X
(for all outcomes and independent variables), E, or the random effects to the



30 corrsys

nearest positive definite matrix with Matrix::nearPD if necessary; if FALSE
and adjgrad = FALSE the negative eigenvalues are replaced with eigmin if
necessary

eigmin minimum replacement eigenvalue if overall intermediate correlation matrix is
not positive-definite (default = 0)

adjgrad TRUE to use adj_grad to convert overall intermediate correlation matrix to a
positive-definite matrix and next 5 inputs can be used

B1 the initial matrix for algorithm; if NULL, uses a scaled initial matrix with diag-
onal elements sqrt(nrow(Sigma))/2

tau parameter used to calculate theta (default = 0.5)

tol maximum error for Frobenius norm distance between new matrix and original
matrix (default = 0.1)

steps maximum number of steps for k (default = 100)

msteps maximum number of steps for m (default = 10)

nrand the number of random numbers to generate in calculating intermediate correla-
tions (default = 10000)

errorloop if TRUE, uses corr_error to attempt to correct the correlation of the inde-
pendent variables within and across outcomes to be within epsilon of the tar-
get correlations corr.x until the number of iterations reaches maxit (default =
FALSE)

epsilon the maximum acceptable error between the final and target correlation matrices
(default = 0.001) in the calculation of ordinal intermediate correlations with
ord_norm or in the error loop

maxit the maximum number of iterations to use (default = 1000) in the calculation of
ordinal intermediate correlations with ord_norm or in the error loop

quiet if FALSE prints messages, if TRUE suppresses messages

Value

A list with the following components:

Y matrix with n rows and M columns of outcomes

X list of length M containing Xord(pj), Xcont(pj), Xcomp(pj), Xpois(pj), Xnb(pj)

X_all list of length M containing Xord(pj), Xcont(pj), Xmix(pj), Xpois(pj), Xnb(pj), X interactions
as indicated by int.var, subject-group level term interactions as indicated by subj.var, Timep,
and Time interactions as indicated by tint.var; order is 1st covariatesX (as specified in corr.x),
2nd group-group or subject-subject interactions (ordered as in int.var), 3rd subject-group inter-
actions (1st by subject-level variable as specified in subj.var, 2nd by covariate as specified in
corr.x), and 4th time interactions (either as specified in corr.x with group-level covariates or in
tint.var)

E matrix with n rows containing continuous non-mixture or components of continuous mixture error
terms

E_mix matrix with n rows containing continuous mixture error terms

Sigma_X0 matrix of intermediate correlations calculated by intercorr
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Sigma_X matrix of intermediate correlations after nearPD or adj_grad function has been used;
applied to generate the normal variables transformed to get the desired distributions

Error_Time the time in minutes required to use the error loop

Time the total simulation time in minutes

niter a matrix of the number of iterations used in the error loop

If continuous variables are produced: constants a list of maximum length 2 * M, the 1st M
components are data.frames of the constants for the Xcont(pj), Xcomp(pj) and Ep, the 2nd M
components are for random effects (if present),

SixCorr a list of maximum length 2 * M, the 1st M components are lists of sixth cumulant correction
values used to obtain valid pdf ’s for the Xcont(pj), Xcomp(pj), and Ep, the 2nd M components are
for random effects (if present),

valid.pdf a list of maximum length 2 * M of vectors where the i-th element is "TRUE" if the
constants for the i-th continuous variable generate a valid pdf, else "FALSE"; the 1st M components
are for theXcont(pj), Xcomp(pj), andEp, the 2nd M components are for random effects (if present)

If random effects are produced: U a list of length M containing matrices of continuous non-mixture
and components of mixture random effects,

U_all a list of length M containing matrices of continuous non-mixture and mixture random effects,

V a list of length M containing matrices of design matrices for random effects,

rmeans2 and rvars2 the means and variances of the non-mixture and components reordered in
accordance with the random intercept and time slope types (input for summary_sys)

Reasons for Function Errors

1) The most likely cause for function errors is that the parameter inputs are mispecified. Using
checkpar prior to simulation can help decrease these errors.

2) Another reason for error is that no solutions to fleish or poly converged when using find_constants.
If this happens, the simulation will stop. It may help to first use find_constants for each con-
tinuous variable to determine if a sixth cumulant correction value is needed. If the standardized
cumulants are obtained from calc_theory, the user may need to use rounded values as inputs (i.e.
skews = round(skews, 8)). For example, in order to ensure that skew is exactly 0 for symmetric
distributions.

3) The kurtosis for a continuous variable may be outside the region of possible values. There is an
associated lower kurtosis boundary for associated with a given skew (for Fleishman’s method) or
skew and fifth and sixth cumulants (for Headrick’s method). Use calc_lower_skurt to determine
the boundary for a given set of cumulants.
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See Also

find_constants, intercorr, checkpar, summary_sys

Examples

M <- 3
B <- calc_theory("Beta", c(4, 1.5))
skews <- lapply(seq_len(M), function(x) B[3])
skurts <- lapply(seq_len(M), function(x) B[4])
fifths <- lapply(seq_len(M), function(x) B[5])
sixths <- lapply(seq_len(M), function(x) B[6])
Six <- lapply(seq_len(M), function(x) list(0.03))
corr.e <- matrix(c(1, 0.4, 0.4^2, 0.4, 1, 0.4, 0.4^2, 0.4, 1), M, M,

byrow = TRUE)
means <- lapply(seq_len(M), function(x) B[1])
vars <- lapply(seq_len(M), function(x) B[2]^2)
marginal <- list(0.3, 0.4, 0.5)
support <- lapply(seq_len(M), function(x) list(0:1))
corr.x <- list(list(matrix(1, 1, 1), matrix(0.4, 1, 1), matrix(0.4, 1, 1)),

list(matrix(0.4, 1, 1), matrix(1, 1, 1), matrix(0.4, 1, 1)),
list(matrix(0.4, 1, 1), matrix(0.4, 1, 1), matrix(1, 1, 1)))

betas <- list(0.5)
betas.t <- 1
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betas.tint <- list(0.25)
Sys1 <- corrsys(10000, M, Time = 1:M, "Polynomial", "non_mix", means, vars,

skews, skurts, fifths, sixths, Six, marginal = marginal, support = support,
corr.x = corr.x, corr.e = corr.e, betas = betas, betas.t = betas.t,
betas.tint = betas.tint, quiet = TRUE)

## Not run:
seed <- 276
n <- 10000
M <- 3
Time <- 1:M

# Error terms have a beta(4, 1.5) distribution with an AR(1, p = 0.4)
# correlation structure
B <- calc_theory("Beta", c(4, 1.5))
skews <- lapply(seq_len(M), function(x) B[3])
skurts <- lapply(seq_len(M), function(x) B[4])
fifths <- lapply(seq_len(M), function(x) B[5])
sixths <- lapply(seq_len(M), function(x) B[6])
Six <- lapply(seq_len(M), function(x) list(0.03))
error_type <- "non_mix"
corr.e <- matrix(c(1, 0.4, 0.4^2, 0.4, 1, 0.4, 0.4^2, 0.4, 1), M, M,

byrow = TRUE)

# 1 continuous mixture of Normal(-2, 1) and Normal(2, 1) for each Y
mix_pis <- lapply(seq_len(M), function(x) list(c(0.4, 0.6)))
mix_mus <- lapply(seq_len(M), function(x) list(c(-2, 2)))
mix_sigmas <- lapply(seq_len(M), function(x) list(c(1, 1)))
mix_skews <- lapply(seq_len(M), function(x) list(c(0, 0)))
mix_skurts <- lapply(seq_len(M), function(x) list(c(0, 0)))
mix_fifths <- lapply(seq_len(M), function(x) list(c(0, 0)))
mix_sixths <- lapply(seq_len(M), function(x) list(c(0, 0)))
mix_Six <- list()
Nstcum <- calc_mixmoments(mix_pis[[1]][[1]], mix_mus[[1]][[1]],

mix_sigmas[[1]][[1]], mix_skews[[1]][[1]], mix_skurts[[1]][[1]],
mix_fifths[[1]][[1]], mix_sixths[[1]][[1]])

means <- lapply(seq_len(M), function(x) c(Nstcum[1], B[1]))
vars <- lapply(seq_len(M), function(x) c(Nstcum[2]^2, B[2]^2))

# 1 binary variable for each Y
marginal <- lapply(seq_len(M), function(x) list(0.4))
support <- list(NULL, list(c(0, 1)), NULL)

# 1 Poisson variable for each Y
lam <- list(1, 5, 10)
# Y2 and Y3 are zero-inflated Poisson variables
p_zip <- list(NULL, 0.05, 0.1)

# 1 NB variable for each Y
size <- list(10, 15, 20)
prob <- list(0.3, 0.4, 0.5)
# either prob or mu is required (not both)
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mu <- mapply(function(x, y) x * (1 - y)/y, size, prob, SIMPLIFY = FALSE)
# Y2 and Y3 are zero-inflated NB variables
p_zinb <- list(NULL, 0.05, 0.1)

# The 2nd (the normal mixture) variable is the same across Y
same.var <- 2

# Create the correlation matrix in terms of the components of the normal
# mixture
K <- 5
corr.x <- list()
corr.x[[1]] <- list(matrix(0.1, K, K), matrix(0.2, K, K), matrix(0.3, K, K))
diag(corr.x[[1]][[1]]) <- 1
# set correlation between components to 0
corr.x[[1]][[1]][2:3, 2:3] <- diag(2)
# set correlations with the same variable equal across outcomes
corr.x[[1]][[2]][, same.var] <- corr.x[[1]][[3]][, same.var] <-

corr.x[[1]][[1]][, same.var]
corr.x[[2]] <- list(t(corr.x[[1]][[2]]), matrix(0.35, K, K),

matrix(0.4, K, K))
diag(corr.x[[2]][[2]]) <- 1
corr.x[[2]][[2]][2:3, 2:3] <- diag(2)

corr.x[[2]][[2]][, same.var] <- corr.x[[2]][[3]][, same.var] <-
t(corr.x[[1]][[2]][same.var, ])

corr.x[[2]][[3]][same.var, ] <- corr.x[[1]][[3]][same.var, ]
corr.x[[2]][[2]][same.var, ] <- t(corr.x[[2]][[2]][, same.var])
corr.x[[3]] <- list(t(corr.x[[1]][[3]]), t(corr.x[[2]][[3]]),

matrix(0.5, K, K))
diag(corr.x[[3]][[3]]) <- 1
corr.x[[3]][[3]][2:3, 2:3] <- diag(2)
corr.x[[3]][[3]][, same.var] <- t(corr.x[[1]][[3]][same.var, ])
corr.x[[3]][[3]][same.var, ] <- t(corr.x[[3]][[3]][, same.var])

# The 2nd and 3rd variables of each Y are subject-level variables
subj.var <- matrix(c(1, 2, 1, 3, 2, 2, 2, 3, 3, 2, 3, 3), 6, 2, byrow = TRUE)
int.var <- tint.var <- NULL
betas.0 <- 0
betas <- list(seq(0.5, 0.5 + (K - 2) * 0.25, 0.25))
betas.subj <- list(seq(0.5, 0.5 + (K - 2) * 0.1, 0.1))
betas.int <- list()
betas.t <- 1
betas.tint <- list(c(0.25, 0.5))

method <- "Polynomial"

# Check parameter inputs
checkpar(M, method, error_type, means, vars, skews, skurts, fifths, sixths,

Six, mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts, mix_fifths,
mix_sixths, mix_Six, marginal, support, lam, p_zip, pois_eps = list(),
size, prob, mu, p_zinb, nb_eps = list(), corr.x, corr.yx = list(),
corr.e, same.var, subj.var, int.var, tint.var, betas.0, betas,
betas.subj, betas.int, betas.t, betas.tint)
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# Simulated system using correlation method 1
N <- corrsys(n, M, Time, method, error_type, means, vars, skews, skurts,

fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts,
mix_fifths, mix_sixths, mix_Six, marginal, support, lam, p_zip, size,
prob, mu, p_zinb, corr.x, corr.e, same.var, subj.var, int.var, tint.var,
betas.0, betas, betas.subj, betas.int, betas.t, betas.tint, seed = seed,
use.nearPD = FALSE)

# Summarize the results
S <- summary_sys(N$Y, N$E, E_mix = NULL, N$X, N$X_all, M, method, means,

vars, skews, skurts, fifths, sixths, mix_pis, mix_mus, mix_sigmas,
mix_skews, mix_skurts, mix_fifths, mix_sixths, marginal, support, lam,
p_zip, size, prob, mu, p_zinb, corr.x, corr.e)

## End(Not run)

corrsys2 Generate Correlated Systems of Equations with Ordinal, Continuous,
and/or Count Variables: Correlation Method 2

Description

This function generates a correlated system of M equations representing a system of repeated mea-
sures at M time points. The equations may contain 1) ordinal (r ≥ 2 categories), continuous (normal,
non-normal, and mixture distributions), count (regular and zero-inflated, Poisson and Negative Bi-
nomial) independent variables X; 2) continuous error terms E; 3) a discrete time variable Time;
and 4) random effects U . The assumptions are that 1) there are at least 2 equations, 2) the in-
dependent variables, random effect terms, and error terms are uncorrelated, 3) each equation has
an error term, 4) all error terms have a continuous non-mixture distribution or all have a con-
tinuous mixture distribution, 5) all random effects are continuous, and 6) growth is linear (with
respect to time). The random effects may be a random intercept, a random slope for time, or a
random slope for any of the X variables. Continuous variables are simulated using either Fleish-
man’s third-order (method = "Fleishman", doi: 10.1007/BF02293811) or Headrick’s fifth-order
(method = "Polynomial", doi: 10.1016/S01679473(02)000725) power method transformation
(PMT). Simulation occurs at the component-level for continuous mixture distributions. The target
correlation matrix is specified in terms of correlations with components of continuous mixture vari-
ables. These components are transformed into the desired mixture variables using random multi-
nomial variables based on the mixing probabilities. The X terms can be the same across equations
(i.e., modeling sex or height) or may be time-varying covariates. The equations may contain differ-
ent numbers of X terms (i.e., a covariate could be missing for a given equation).

The outcomes Y are generated using a hierarchical linear models (HLM) approach, which allows
the data to be structured in at least two levels. Level-1 is the repeated measure (time or condition)
and other subject-level variables. Level-1 is nested within Level-2, which describes the average
of the outcome (the intercept) and growth (slope for time) as a function of group-level variables.
The first level captures the within-subject variation, while the second level describes the between-
subjects variability. Using a HLM provides a way to determine if: a) subjects differ at a specific
time point with respect to the dependent variable, b) growth rates differ across conditions, or c)

http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
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growth rates differ across subjects. Random effects describe deviation at the subject-level from the
average (fixed) effect described by the slope coefficients (betas). See the The Hierarchical Linear
Models Approach for a System of Correlated Equations with Multiple Variable Types vignette
for a description of the HLM model. The user can specify subject-level X terms, and each subject-
level X term is crossed with all group-level X terms. The equations may also contain interactions
between X variables. Interactions specified in int.var between two group-level covariates are
themselves considered group-level covariates and will be crossed with subject-level covariates. In-
teractions between two subject-level covariates are considered subject-level covariates and will be
crossed with group-level covariates. Since Time is a subject-level variable, each group-level term is
crossed with Time unless otherwise specified.

Random effects may be added for the intercept, time slope, or effects of any of the covariates.
The type of random intercept and time slope (i.e., non-mixture or mixture) is specified in rand.int
and rand.tsl. This type may vary by equation. The random effects for independent variables are
specified in rand.var and may also contain a combination of non-mixture and mixture continuous
distributions. If the parameter lists are of length M + 1, the random effects are the same variables
across equations and the correlation for the effects corr.u is a matrix. If the parameter lists are of
length 2 * M, the random effects are different variables across equations and the correlation for the
effects corr.u is a list.

The independent variables, interactions, Time effect, random effects, and error terms are summed
together to produce the outcomes Y . The beta coefficients may be the same or differ across equa-
tions. The user specifies the betas for the independent variables in betas, for the interactions
between two group-level or two subject-level covariates in betas.int, for the group-subject level
interactions in betas.subj, and for the Time interactions in betas.tint. Setting a coefficient to 0
will eliminate that term. The user also provides the correlations 1) between E terms; 2) between X
variables within each outcome Yp, p = 1, ..., M, and between outcome pairs; and 3) between U
variables within each outcome Yp, p = 1, ..., M, and between outcome pairs. The order of the
independent variables in corr.x must be 1st ordinal (same order as in marginal), 2nd continuous
non-mixture (same order as in skews), 3rd components of continuous mixture (same order as in
mix_pis), 4th regular Poisson, 5th zero-inflated Poisson (same order as in lam), 6th regular NB,
and 7th zero-inflated NB (same order as in size). The order of the random effects in corr.u must
be 1st random intercept, 2nd random time slope, 3rd continuous non-mixture random effects, and
4th components of continuous mixture random effects.

The variables are generated from multivariate normal variables with intermediate correlations calcu-
lated using intercorr2, which employs correlation method 2. See SimCorrMix for a description
of the correlation method and the techniques used to generate each variable type. The order of the
variables returned is 1st covariates X (as specified in corr.x), 2nd group-group or subject-subject
interactions (ordered as in int.var), 3rd subject-group interactions (1st by subject-level variable as
specified in subj.var, 2nd by covariate as specified in corr.x), and 4th time interactions (either as
specified in corr.x with group-level covariates or in tint.var).

This function contains no parameter checks in order to decrease simulation time. That should be
done first using checkpar. Summaries of the system can be obtained using summary_sys. The
Correlated Systems of Statistical Equations with Multiple Variable Types demonstrates exam-
ples.

Usage

corrsys2(n = 10000, M = NULL, Time = NULL, method = c("Fleishman",



38 corrsys2

"Polynomial"), error_type = c("non_mix", "mix"), means = list(),
vars = list(), skews = list(), skurts = list(), fifths = list(),
sixths = list(), Six = list(), mix_pis = list(), mix_mus = list(),
mix_sigmas = list(), mix_skews = list(), mix_skurts = list(),
mix_fifths = list(), mix_sixths = list(), mix_Six = list(),
marginal = list(), support = list(), lam = list(), p_zip = list(),
pois_eps = list(), size = list(), prob = list(), mu = list(),
p_zinb = list(), nb_eps = list(), corr.x = list(), corr.e = NULL,
same.var = NULL, subj.var = NULL, int.var = NULL, tint.var = NULL,
betas.0 = NULL, betas = list(), betas.subj = list(),
betas.int = list(), betas.t = NULL, betas.tint = list(),
rand.int = c("none", "non_mix", "mix"), rand.tsl = c("none", "non_mix",
"mix"), rand.var = NULL, corr.u = list(), seed = 1234,
use.nearPD = TRUE, eigmin = 0, adjgrad = FALSE, B1 = NULL,
tau = 0.5, tol = 0.1, steps = 100, msteps = 10, errorloop = FALSE,
epsilon = 0.001, maxit = 1000, quiet = FALSE)

Arguments

n the sample size (i.e. the length of each simulated variable; default = 10000)

M the number of dependent variables Y (outcomes); equivalently, the number of
equations in the system

Time a vector of values to use for time; each subject receives the same time value; if
NULL, Time = 1:M

method the PMT method used to generate all continuous variables, including indepen-
dent variables (covariates), error terms, and random effects; "Fleishman" uses
Fleishman’s third-order polynomial transformation and "Polynomial" uses Head-
rick’s fifth-order transformation

error_type "non_mix" if all error terms have continuous non-mixture distributions, "mix" if
all error terms have continuous mixture distributions

means if no random effects, a list of length M where means[[p]] contains a vector of
means for the continuous independent variables in equation p with non-mixture
(Xcont) or mixture (Xmix) distributions and for the error terms (E); order in
vector is Xcont, Xmix, E

if there are random effects, a list of length M + 1 if the effects are the same across
equations or 2 * M if they differ; where means[M + 1] or means[(M + 1):(2 * M)]
are vectors of means for all random effects with continuous non-mixture or mix-
ture distributions; order in vector is 1st random interceptU0 (if rand.int != "none"),
2nd random time slope U1 (if rand.tsl != "none"), 3rd other random slopes
with non-mixture distributions Ucont, 4th other random slopes with mixture dis-
tributions Umix

vars a list of same length and order as means containing vectors of variances for the
continuous variables, error terms, and any random effects

skews if no random effects, a list of length M where skews[[p]] contains a vector of
skew values for the continuous independent variables in equation p with non-
mixture (Xcont) distributions and for E if error_type = "non_mix"; order in
vector is Xcont, E
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if there are random effects, a list of length M + 1 if the effects are the same across
equations or 2 * M if they differ; where skews[M + 1] or skews[(M + 1):(2 * M)]
are vectors of skew values for all random effects with continuous non-mixture
distributions; order in vector is 1st random interceptU0 (if rand.int = "non_mix"),
2nd random time slopeU1 (if rand.tsl = "non_mix"), 3rd other random slopes
with non-mixture distributions Ucont

skurts a list of same length and order as skews containing vectors of standardized kur-
toses (kurtosis - 3) for the continuous variables, error terms, and any random
effects with non-mixture distributions

fifths a list of same length and order as skews containing vectors of standardized fifth
cumulants for the continuous variables, error terms, and any random effects with
non-mixture distributions; not necessary for method = "Fleishman"

sixths a list of same length and order as skews containing vectors of standardized sixth
cumulants for the continuous variables, error terms, and any random effects with
non-mixture distributions; not necessary for method = "Fleishman"

Six a list of length M, M + 1, or 2 * M, where Six[1:M] are for Xcont, E (if
error_type = "non_mix") and Six[M + 1] or Six[(M + 1):(2 * M)] are
for non-mixture U ; if error_type = "mix" and there are only random effects
(i.e., length(corr.x) = 0), use Six[1:M] = rep(list(NULL), M) so that
Six[M + 1] or Six[(M + 1):(2 * M)] describes the non-mixture U ;
Six[[p]][[j]] is a vector of sixth cumulant correction values to aid in finding a
valid PDF for Xcont(pj), the j-th continuous non-mixture covariate for outcome
Yp; the last vector in Six[[p]] is for Ep (if error_type = "non_mix"); use
Six[[p]][[j]] = NULL if no correction desired forXcont(pj); use Six[[p]] = NULL
if no correction desired for any continuous non-mixture covariate or error term
in equation p
Six[[M + p]][[j]] is a vector of sixth cumulant correction values to aid in
finding a valid PDF for U(pj), the j-th non-mixture random effect for outcome
Yp; use Six[[M + p]][[j]] = NULL if no correction desired for U(pj); use
Six[[M + p]] = NULL if no correction desired for any continuous non-mixture
random effect in equation p
keep Six = list() if no corrections desired for all equations or if method = "Fleishman"

mix_pis list of length M, M + 1 or 2 * M, where mix_pis[1:M] are for Xcont, E (if
error_type = "mix") and mix_pis[M + 1] or mix_pis[(M + 1):(2 * M)]
are for mixture U ; use mix_pis[[p]] = NULL if equation p has no continuous
mixture terms if error_type = "non_mix" and there are only random effects
(i.e., length(corr.x) = 0), use mix_pis[1:M] = NULL so that mix_pis[M + 1]
or mix_pis[(M + 1):(2 * M)] describes the mixture U ;
mix_pis[[p]][[j]] is a vector of mixing probabilities of the component distri-
butions for Xmix(pj), the j-th mixture covariate for outcome Yp; the last vector
in mix_pis[[p]] is for Ep (if error_type = "mix"); components should be
ordered as in corr.x

mix_pis[[M + p]][[j]] is a vector of mixing probabilities of the component
distributions for U(pj), the j-th random effect with a mixture distribution for
outcome Yp; order is 1st random intercept (if rand.int = "mix"), 2nd ran-
dom time slope (if rand.tsl = "mix"), 3rd other random slopes with mixture
distributions; components should be ordered as in corr.u
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mix_mus list of same length and order as mix_pis;
mix_mus[[p]][[j]] is a vector of means of the component distributions for
Xmix(pj), the last vector in mix_mus[[p]] is for Ep (if error_type = "mix")
mix_mus[[p]][[j]] is a vector of means of the component distributions for
Umix(pj)

mix_sigmas list of same length and order as mix_pis;
mix_sigmas[[p]][[j]] is a vector of standard deviations of the component
distributions for Xmix(pj), the last vector in mix_sigmas[[p]] is for Ep (if
error_type = "mix")
mix_sigmas[[p]][[j]] is a vector of standard deviations of the component
distributions for Umix(pj)

mix_skews list of same length and order as mix_pis;
mix_skews[[p]][[j]] is a vector of skew values of the component distribu-
tions forXmix(pj), the last vector in mix_skews[[p]] is forEp (if error_type = "mix")
mix_skews[[p]][[j]] is a vector of skew values of the component distribu-
tions for Umix(pj)

mix_skurts list of same length and order as mix_pis;
mix_skurts[[p]][[j]] is a vector of standardized kurtoses of the component
distributions for Xmix(pj), the last vector in mix_skurts[[p]] is for Ep (if
error_type = "mix")
mix_skurts[[p]][[j]] is a vector of standardized kurtoses of the component
distributions for Umix(pj)

mix_fifths list of same length and order as mix_pis; not necessary for method = "Fleishman";
mix_fifths[[p]][[j]] is a vector of standardized fifth cumulants of the com-
ponent distributions for Xmix(pj), the last vector in mix_fifths[[p]] is for Ep

(if error_type = "mix")
mix_fifths[[p]][[j]] is a vector of standardized fifth cumulants of the com-
ponent distributions for Umix(pj)

mix_sixths list of same length and order as mix_pis; not necessary for method = "Fleishman";
mix_sixths[[p]][[j]] is a vector of standardized sixth cumulants of the com-
ponent distributions for Xmix(pj), the last vector in mix_sixths[[p]] is for Ep

(if error_type = "mix")
mix_sixths[[p]][[j]] is a vector of standardized sixth cumulants of the com-
ponent distributions for Umix(pj)

mix_Six a list of same length and order as mix_pis; keep mix_Six = list() if no
corrections desired for all equations or if method = "Fleishman"

p-th component of mix_Six[1:M] is a list of length equal to the total number
of component distributions for the Xmix(p) and Ep (if error_type = "mix");
mix_Six[[p]][[j]] is a vector of sixth cumulant corrections for the j-th com-
ponent distribution (i.e., if there are 2 continuous mixture independent variables
for Yp, where Xmix(p1) has 2 components and Xmix(p2) has 3 components,
then length(mix_Six[[p]]) = 5 and mix_Six[[p]][[3]] would correspond
to the 1st component of Xmix(p2)); use mix_Six[[p]][[j]] = NULL if no cor-
rection desired for that component; use mix_Six[[p]] = NULL if no correction
desired for any component of Xmix(p) and Ep
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q-th component of mix_Six[M + 1] or mix_Six[(M + 1):(2 * M)] is a list
of length equal to the total number of component distributions for the Umix(q);
mix_Six[[q]][[j]] is a vector of sixth cumulant corrections for the j-th com-
ponent distribution; use mix_Six[[q]][[j]] = NULL if no correction desired
for that component; use mix_Six[[q]] = NULL if no correction desired for any
component of Umix(q)

marginal a list of length M, with the p-th component a list of cumulative probabilities for
the ordinal variables associated with outcome Yp (use marginal[[p]] = NULL
if outcome Yp has no ordinal variables); marginal[[p]][[j]] is a vector of the
cumulative probabilities defining the marginal distribution of Xord(pj), the j-th
ordinal variable for outcome Yp; if the variable can take r values, the vector will
contain r - 1 probabilities (the r-th is assumed to be 1); for binary variables, the
probability is the probability of the 1st category, which has the smaller support
value; length(marginal[[p]]) can differ across outcomes; the order should
be the same as in corr.x

support a list of length M, with the p-th component a list of support values for the ordinal
variables associated with outcome Yp; use support[[p]] = NULL if outcome
Yp has no ordinal variables; support[[p]][[j]] is a vector of the support val-
ues defining the marginal distribution of Xord(pj), the j-th ordinal variable for
outcome Yp; if not provided, the default for r categories is 1, ..., r

lam list of length M, p-th component a vector of lambda (means > 0) values for Pois-
son variables for outcome Yp (see stats::dpois); order is 1st regular Poisson
and 2nd zero-inflated Poisson; use lam[[p]] = NULL if outcome Yp has no Pois-
son variables; length(lam[[p]]) can differ across outcomes; the order should
be the same as in corr.x

p_zip a list of vectors of probabilities of structural zeros (not including zeros from the
Poisson distribution) for the zero-inflated Poisson variables (see VGAM::dzipois);
if p_zip = 0, Ypois has a regular Poisson distribution; if p_zip is in (0, 1), Ypois
has a zero-inflated Poisson distribution; if p_zip is in (-(exp(lam) - 1)^(-1), 0),
Ypois has a zero-deflated Poisson distribution and p_zip is not a probability; if
p_zip = -(exp(lam) - 1)^(-1), Ypois has a positive-Poisson distribution (see
VGAM::dpospois); order is 1st regular Poisson and 2nd zero-inflated Poisson; if
a single number, all Poisson variables given this value; if a vector of length M,
all Poisson variables in equation p given p_zip[p]; otherwise, missing values
are set to 0 and ordered 1st

pois_eps list of length M, p-th component a vector of length lam[[p]] containing cumu-
lative probability truncation values used to calculate intermediate correlations
involving Poisson variables; order is 1st regular Poisson and 2nd zero-inflated
Poisson; if a single number, all Poisson variables given this value; if a vector
of length M, all Poisson variables in equation p given pois_eps[p]; otherwise,
missing values are set to 0.0001 and ordered 1st

size list of length M, p-th component a vector of size parameters for the Negative
Binomial variables for outcome Yp (see stats::dnbinom); order is 1st regular
NB and 2nd zero-inflated NB; use size[[p]] = NULL if outcome Yp has no
Negative Binomial variables; length(size[[p]]) can differ across outcomes;
the order should be the same as in corr.x
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prob list of length M, p-th component a vector of success probabilities for the Negative
Binomial variables for outcome Yp (see stats::dnbinom); order is 1st regular
NB and 2nd zero-inflated NB; use prob[[p]] = NULL if outcome Yp has no
Negative Binomial variables; length(prob[[p]]) can differ across outcomes;
the order should be the same as in corr.x

mu list of length M, p-th component a vector of mean values for the Negative Bino-
mial variables for outcome Yp (see stats::dnbinom); order is 1st regular NB
and 2nd zero-inflated NB; use mu[[p]] = NULL if outcome Yp has no Negative
Binomial variables; length(mu[[p]]) can differ across outcomes; the order
should be the same as in corr.x; for zero-inflated NB variables, this refers to
the mean of the NB distribution (see VGAM::dzinegbin) (*Note: either prob or
mu should be supplied for all Negative Binomial variables, not a mixture)

p_zinb a vector of probabilities of structural zeros (not including zeros from the NB dis-
tribution) for the zero-inflated NB variables (see VGAM::dzinegbin); if p_zinb
= 0, Ynb has a regular NB distribution; if p_zinb is in (-prob^size/(1 - prob^size),
0), Ynb has a zero-deflated NB distribution and p_zinb is not a probability; if
p_zinb = -prob^size/(1 - prob^size), Ynb has a positive-NB distribution
(see VGAM::dposnegbin); order is 1st regular NB and 2nd zero-inflated NB; if
a single number, all NB variables given this value; if a vector of length M, all NB
variables in equation p given p_zinb[p]; otherwise, missing values are set to 0
and ordered 1st

nb_eps list of length M, p-th component a vector of length size[[p]] containing cumu-
lative probability truncation values used to calculate intermediate correlations
involving Negative Binomial variables; order is 1st regular NB and 2nd zero-
inflated NB; if a single number, all NB variables given this value; if a vector of
length M, all NB variables in equation p given nb_eps[p]; otherwise, missing
values are set to 0.0001 and ordered 1st

corr.x list of length M, each component a list of length M; corr.x[[p]][[q]] is ma-
trix of correlations for independent variables in equations p (X(pj) for out-
come Yp) and q (X(qj) for outcome Yq); order: 1st ordinal (same order as in
marginal), 2nd continuous non-mixture (same order as in skews), 3rd com-
ponents of continuous mixture (same order as in mix_pis), 4th regular Pois-
son, 5th zero-inflated Poisson (same order as in lam), 6th regular NB, and 7th
zero-inflated NB (same order as in size); if p = q, corr.x[[p]][[q]] is a
correlation matrix with nrow(corr.x[[p]][[q]]) = # X(pj) for outcome Yp;
if p != q, corr.x[[p]][[q]] is a non-symmetric matrix of correlations where
rows correspond to covariates for Yp so that nrow(corr.x[[p]][[q]]) = #
X(pj) for outcome Yp and columns correspond to covariates for Yq so that
ncol(corr.x[[p]][[q]]) = #X(qj) for outcome Yq; use corr.x[[p]][[q]] = NULL
if equation q has no X(qj); use corr.x[[p]] = NULL if equation p has no X(pj)

corr.e correlation matrix for continuous non-mixture or components of mixture error
terms

same.var either a vector or a matrix; if a vector, same.var includes column numbers of
corr.x[[1]][[1]] corresponding to independent variables that should be iden-
tical across equations; these terms must have the same indices for all p = 1, ..., M;
i.e., if the 1st ordinal variable represents sex which should be the same for each
equation, then same.var[1] = 1 since ordinal variables are 1st in corr.x[[1]][[1]]
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and sex is the 1st ordinal variable, and the 1st term for all other outcomes must
also be sex; if a matrix, columns 1 and 2 are outcome p and column index in
corr.x[[p]][[p]] for 1st instance of variable, columns 3 and 4 are outcome q
and column index in corr.x[[q]][[q]] for subsequent instances of variable;
i.e., if 1st term for all outcomes is sex and M = 3, then same.var = matrix(c(1,
1, 2, 1, 1, 1, 3, 1), 2, 4, byrow = TRUE); the independent variable in-
dex corresponds to ordinal, continuous non-mixture, component of continuous
mixture, Poisson, or NB variable

subj.var matrix where 1st column is outcome index (p = 1, ..., M), 2nd column
is independent variable index corresponding to covariate which is a a subject-
level term (not including time), including time-varying covariates; the indepen-
dent variable index corresponds to ordinal, continuous non-mixture, continuous
mixture (not mixture component), Poisson, or NB variable; assumes all other
variables are group-level terms; these subject-level terms are used to form inter-
actions with the group level terms

int.var matrix where 1st column is outcome index (p = 1, ..., M), 2nd and 3rd
columns are indices corresponding to two group-level or two subject-level in-
dependent variables to form interactions between; this includes all interactions
that are not accounted for by a subject-group level interaction (as indicated by
subj.var) or by a time-covariate interaction (as indicated by tint.var); ex: 1,
2, 3 indicates that for outcome 1, the 2nd and 3rd independent variables form
an interaction term; the independent variable index corresponds to ordinal, con-
tinuous non-mixture, continuous mixture (not mixture component), Poisson, or
NB variable

tint.var matrix where 1st column is outcome index (p = 1, ..., M), 2nd column is in-
dex of independent variable to form interaction with time; if tint.var = NULL
or noX(pj) are indicated for outcome Yp, all group-level variables (variables not
indicated as subject-level variables in subj.var) will be crossed with time, else
includes only terms indicated by 2nd column (i.e., in order to include subject-
level variables); ex: 1, 1 indicates that for outcome 1, the 1st independent vari-
able has an interaction with time; the independent variable index corresponds to
ordinal, continuous non-mixture, continuous mixture (not mixture component),
Poisson, or NB variable

betas.0 vector of length M containing intercepts, if NULL all set equal to 0; if length 1, all
intercepts set to betas.0

betas list of length M, p-th component a vector of coefficients for outcome Yp, includ-
ing group and subject-level terms; order is order of variables in corr.x[[p]][[p]];
if betas = list(), all set to 0 so that all Y only have intercept and/or interac-
tion terms plus error terms; if all outcomes have the same betas, use list of length
1; if Yp only has intercept and/or interaction terms, set betas[[p]] = NULL;
if there are continuous mixture variables, beta is for mixture variable (not for
components)

betas.subj list of length M, p-th component a vector of coefficients for interaction terms
between group-level terms and subject-level terms given in subj.var; order
is 1st by subject-level covariate as given in subj.var and 2nd by group-level
covariate as given in corr.x or an interaction between group-level terms; if all
outcomes have the same betas, use list of length 1; if Yp only has group-level
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terms, set betas.subj[[p]] = NULL; since subject-subject interactions are
treated as subject-level variables, these will also be crossed with all group-level
variables and require coefficients; if there are continuous mixture variables, beta
is for mixture variable (not for components)

betas.int list of length M, p-th component a vector of coefficients for interaction terms in-
dicated in int.var; order is the same order as given in int.var; if all outcomes
have the same betas, use list of length 1; if Yp has none, set betas.int[[p]] = NULL;
if there are continuous mixture variables, beta is for mixture variable (not for
components)

betas.t vector of length M of coefficients for time terms, if NULL all set equal to 1; if
length 1, all intercepts set to betas.t

betas.tint list of length M, p-th component a vector of coefficients for all interactions
with time; this includes interactions with group-level covariates or terms in-
dicated in tint.var; order is the same order as given in corr.x or tint.var;
if all outcomes have the same betas, use list of length 1; if Yp has none, set
betas.tint[[p]] = NULL; since group-group interactions are treated as group-
level variables, these will also be crossed with time (unless otherwise specified
for that outcome in tint.var) and require coefficients; if there are continuous
mixture variables, beta is for mixture variable (not for components)

rand.int "none" (default) if no random intercept term for all outcomes, "non_mix" if
all random intercepts have a continuous non-mixture distribution, "mix" if all
random intercepts have a continuous mixture distribution; also can be a vector
of length M containing a combination (i.e., c("non_mix", "mix", "none") if
the 1st has a non-mixture distribution, the 2nd has a mixture distribution, and
3rd outcome has no random intercept)

rand.tsl "none" (default) if no random slope for time for all outcomes, "non_mix" if
all random time slopes have a continuous non-mixture distribution, "mix" if all
random time slopes have a continuous mixture distribution; also can be a vector
of length M as in rand.int

rand.var matrix where 1st column is outcome index (p = 1, ..., M), 2nd column is
independent variable index corresponding to covariate to assign random effect
to (not including the random intercept or time slope if present); the independent
variable index corresponds to ordinal, continuous non-mixture, continuous mix-
ture (not mixture component), Poisson, or NB variable; order is 1st continuous
non-mixture and 2nd continuous mixture random effects; note that the order of
the rows corresponds to the order of the random effects in corr.u not the or-
der of the independent variable so that a continuous mixture covariate with a
non-mixture random effect would be ordered before a continuous non-mixture
covariate with a mixture random effect (the 2nd column of rand.var indicates
the specific covariate)

corr.u if the random effects are the same variables across equations, a matrix of cor-
relations for U ; if the random effects are different variables across equations, a
list of length M, each component a list of length M; corr.u[[p]][[q]] is ma-
trix of correlations for random effects in equations p (U(pj) for outcome Yp)
and q (U(qj) for outcome Yq); if p = q, corr.u[[p]][[q]] is a correlation
matrix with nrow(corr.u[[p]][[q]]) = # U(pj) for outcome Yp; if p != q,
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corr.u[[p]][[q]] is a non-symmetric matrix of correlations where rows cor-
respond toU(pj) for Yp so that nrow(corr.u[[p]][[q]]) = #U(pj) for outcome
Yp and columns correspond to U(qj) for Yq so that ncol(corr.u[[p]][[q]])
= # U(qj) for outcome Yq; the number of random effects for Yp is taken from
nrow(corr.u[[p]][[1]]) so that if there should be random effects, there must
be entries for corr.u; use corr.u[[p]][[q]] = NULL if equation q has no
U(qj); use corr.u[[p]] = NULL if equation p has no U(pj);
correlations are specified in terms of components of mixture variables (if present);
order is 1st random intercept (if rand.int != "none"), 2nd random time slope
(if rand.tsl != "none"), 3rd other random slopes with non-mixture distribu-
tions, 4th other random slopes with mixture distributions

seed the seed value for random number generation (default = 1234)

use.nearPD TRUE to convert the overall intermediate correlation matrix formed by the X
(for all outcomes and independent variables), E, or the random effects to the
nearest positive definite matrix with Matrix::nearPD if necessary; if FALSE
and adjgrad = FALSE the negative eigenvalues are replaced with eigmin if
necessary

eigmin minimum replacement eigenvalue if overall intermediate correlation matrix is
not positive-definite (default = 0)

adjgrad TRUE to use adj_grad to convert overall intermediate correlation matrix to a
positive-definite matrix and next 5 inputs can be used

B1 the initial matrix for algorithm; if NULL, uses a scaled initial matrix with diag-
onal elements sqrt(nrow(Sigma))/2

tau parameter used to calculate theta (default = 0.5)

tol maximum error for Frobenius norm distance between new matrix and original
matrix (default = 0.1)

steps maximum number of steps for k (default = 100)

msteps maximum number of steps for m (default = 10)

errorloop if TRUE, uses corr_error to attempt to correct the correlation of the inde-
pendent variables within and across outcomes to be within epsilon of the tar-
get correlations corr.x until the number of iterations reaches maxit (default =
FALSE)

epsilon the maximum acceptable error between the final and target correlation matrices
(default = 0.001) in the calculation of ordinal intermediate correlations with
ord_norm or in the error loop

maxit the maximum number of iterations to use (default = 1000) in the calculation of
ordinal intermediate correlations with ord_norm or in the error loop

quiet if FALSE prints messages, if TRUE suppresses messages

Value

A list with the following components:

Y matrix with n rows and M columns of outcomes

X list of length M containing Xord(pj), Xcont(pj), Xcomp(pj), Xpois(pj), Xnb(pj)
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X_all list of length M containing Xord(pj), Xcont(pj), Xmix(pj), Xpois(pj), Xnb(pj), X interactions
as indicated by int.var, subject-group level term interactions as indicated by subj.var, Timep,
and Time interactions as indicated by tint.var; order is 1st covariatesX (as specified in corr.x),
2nd group-group or subject-subject interactions (ordered as in int.var), 3rd subject-group inter-
actions (1st by subject-level variable as specified in subj.var, 2nd by covariate as specified in
corr.x), and 4th time interactions (either as specified in corr.x with group-level covariates or in
tint.var)

E matrix with n rows containing continuous non-mixture or components of continuous mixture error
terms

E_mix matrix with n rows containing continuous mixture error terms

Sigma_X0 matrix of intermediate correlations calculated by intercorr2

Sigma_X matrix of intermediate correlations after nearPD or adj_grad function has been used;
applied to generate the normal variables transformed to get the desired distributions

Error_Time the time in minutes required to use the error loop

Time the total simulation time in minutes

niter a matrix of the number of iterations used in the error loop

If continuous variables are produced: constants a list of maximum length 2 * M, the 1st M
components are data.frames of the constants for the Xcont(pj), Xcomp(pj) and Ep, the 2nd M
components are for random effects (if present),

SixCorr a list of maximum length 2 * M, the 1st M components are lists of sixth cumulant correction
values used to obtain valid pdf ’s for the Xcont(pj), Xcomp(pj), and Ep, the 2nd M components are
for random effects (if present),

valid.pdf a list of maximum length 2 * M of vectors where the i-th element is "TRUE" if the
constants for the i-th continuous variable generate a valid pdf, else "FALSE"; the 1st M components
are for theXcont(pj), Xcomp(pj), andEp, the 2nd M components are for random effects (if present)

If random effects are produced: U a list of length M containing matrices of continuous non-mixture
and components of mixture random effects,

U_all a list of length M containing matrices of continuous non-mixture and mixture random effects,

V a list of length M containing matrices of design matrices for random effects,

rmeans2 and rvars2 the means and variances of the non-mixture and components reordered in
accordance with the random intercept and time slope types (input for summary_sys)

Reasons for Function Errors

1) The most likely cause for function errors is that the parameter inputs are mispecified. Using
checkpar prior to simulation can help decrease these errors.

2) Another reason for error is that no solutions to fleish or poly converged when using find_constants.
If this happens, the simulation will stop. It may help to first use find_constants for each con-
tinuous variable to determine if a sixth cumulant correction value is needed. If the standardized
cumulants are obtained from calc_theory, the user may need to use rounded values as inputs (i.e.
skews = round(skews, 8)). For example, in order to ensure that skew is exactly 0 for symmetric
distributions.

3) The kurtosis for a continuous variable may be outside the region of possible values. There is an
associated lower kurtosis boundary for associated with a given skew (for Fleishman’s method) or
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skew and fifth and sixth cumulants (for Headrick’s method). Use calc_lower_skurt to determine
the boundary for a given set of cumulants.
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See Also

find_constants, intercorr2, checkpar, summary_sys

Examples

M <- 3
B <- calc_theory("Beta", c(4, 1.5))
skews <- lapply(seq_len(M), function(x) B[3])
skurts <- lapply(seq_len(M), function(x) B[4])
fifths <- lapply(seq_len(M), function(x) B[5])
sixths <- lapply(seq_len(M), function(x) B[6])
Six <- lapply(seq_len(M), function(x) list(0.03))
corr.e <- matrix(c(1, 0.4, 0.4^2, 0.4, 1, 0.4, 0.4^2, 0.4, 1), M, M,

byrow = TRUE)
means <- lapply(seq_len(M), function(x) B[1])
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vars <- lapply(seq_len(M), function(x) B[2]^2)
marginal <- list(0.3, 0.4, 0.5)
support <- lapply(seq_len(M), function(x) list(0:1))
corr.x <- list(list(matrix(1, 1, 1), matrix(0.4, 1, 1), matrix(0.4, 1, 1)),

list(matrix(0.4, 1, 1), matrix(1, 1, 1), matrix(0.4, 1, 1)),
list(matrix(0.4, 1, 1), matrix(0.4, 1, 1), matrix(1, 1, 1)))

betas <- list(0.5)
betas.t <- 1
betas.tint <- list(0.25)
Sys2 <- corrsys2(10000, M, Time = 1:M, "Polynomial", "non_mix", means, vars,

skews, skurts, fifths, sixths, Six, marginal = marginal, support = support,
corr.x = corr.x, corr.e = corr.e, betas = betas, betas.t = betas.t,
betas.tint = betas.tint, quiet = TRUE)

## Not run:
seed <- 276
n <- 10000
M <- 3
Time <- 1:M

# Error terms have a beta(4, 1.5) distribution with an AR(1, p = 0.4)
# correlation structure
B <- calc_theory("Beta", c(4, 1.5))
skews <- lapply(seq_len(M), function(x) B[3])
skurts <- lapply(seq_len(M), function(x) B[4])
fifths <- lapply(seq_len(M), function(x) B[5])
sixths <- lapply(seq_len(M), function(x) B[6])
Six <- lapply(seq_len(M), function(x) list(0.03))
error_type <- "non_mix"
corr.e <- matrix(c(1, 0.4, 0.4^2, 0.4, 1, 0.4, 0.4^2, 0.4, 1), M, M,

byrow = TRUE)

# 1 continuous mixture of Normal(-2, 1) and Normal(2, 1) for each Y
mix_pis <- lapply(seq_len(M), function(x) list(c(0.4, 0.6)))
mix_mus <- lapply(seq_len(M), function(x) list(c(-2, 2)))
mix_sigmas <- lapply(seq_len(M), function(x) list(c(1, 1)))
mix_skews <- lapply(seq_len(M), function(x) list(c(0, 0)))
mix_skurts <- lapply(seq_len(M), function(x) list(c(0, 0)))
mix_fifths <- lapply(seq_len(M), function(x) list(c(0, 0)))
mix_sixths <- lapply(seq_len(M), function(x) list(c(0, 0)))
mix_Six <- list()
Nstcum <- calc_mixmoments(mix_pis[[1]][[1]], mix_mus[[1]][[1]],

mix_sigmas[[1]][[1]], mix_skews[[1]][[1]], mix_skurts[[1]][[1]],
mix_fifths[[1]][[1]], mix_sixths[[1]][[1]])

means <- lapply(seq_len(M), function(x) c(Nstcum[1], B[1]))
vars <- lapply(seq_len(M), function(x) c(Nstcum[2]^2, B[2]^2))

# 1 binary variable for each Y
marginal <- lapply(seq_len(M), function(x) list(0.4))
support <- list(NULL, list(c(0, 1)), NULL)

# 1 Poisson variable for each Y
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lam <- list(1, 5, 10)
# Y2 and Y3 are zero-inflated Poisson variables
p_zip <- list(NULL, 0.05, 0.1)

# 1 NB variable for each Y
size <- list(10, 15, 20)
prob <- list(0.3, 0.4, 0.5)
# either prob or mu is required (not both)
mu <- mapply(function(x, y) x * (1 - y)/y, size, prob, SIMPLIFY = FALSE)
# Y2 and Y3 are zero-inflated NB variables
p_zinb <- list(NULL, 0.05, 0.1)
pois_eps <- nb_eps <- list()

# The 2nd (the normal mixture) variable is the same across Y
same.var <- 2

# Create the correlation matrix in terms of the components of the normal
# mixture
K <- 5
corr.x <- list()
corr.x[[1]] <- list(matrix(0.1, K, K), matrix(0.2, K, K), matrix(0.3, K, K))
diag(corr.x[[1]][[1]]) <- 1
# set correlation between components to 0
corr.x[[1]][[1]][2:3, 2:3] <- diag(2)
# set correlations with the same variable equal across outcomes
corr.x[[1]][[2]][, same.var] <- corr.x[[1]][[3]][, same.var] <-

corr.x[[1]][[1]][, same.var]
corr.x[[2]] <- list(t(corr.x[[1]][[2]]), matrix(0.35, K, K),

matrix(0.4, K, K))
diag(corr.x[[2]][[2]]) <- 1
corr.x[[2]][[2]][2:3, 2:3] <- diag(2)

corr.x[[2]][[2]][, same.var] <- corr.x[[2]][[3]][, same.var] <-
t(corr.x[[1]][[2]][same.var, ])

corr.x[[2]][[3]][same.var, ] <- corr.x[[1]][[3]][same.var, ]
corr.x[[2]][[2]][same.var, ] <- t(corr.x[[2]][[2]][, same.var])
corr.x[[3]] <- list(t(corr.x[[1]][[3]]), t(corr.x[[2]][[3]]),

matrix(0.5, K, K))
diag(corr.x[[3]][[3]]) <- 1
corr.x[[3]][[3]][2:3, 2:3] <- diag(2)
corr.x[[3]][[3]][, same.var] <- t(corr.x[[1]][[3]][same.var, ])
corr.x[[3]][[3]][same.var, ] <- t(corr.x[[3]][[3]][, same.var])

# The 2nd and 3rd variables of each Y are subject-level variables
subj.var <- matrix(c(1, 2, 1, 3, 2, 2, 2, 3, 3, 2, 3, 3), 6, 2, byrow = TRUE)
int.var <- tint.var <- NULL
betas.0 <- 0
betas <- list(seq(0.5, 0.5 + (K - 2) * 0.25, 0.25))
betas.subj <- list(seq(0.5, 0.5 + (K - 2) * 0.1, 0.1))
betas.int <- list()
betas.t <- 1
betas.tint <- list(c(0.25, 0.5))

method <- "Polynomial"
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# Check parameter inputs
checkpar(M, method, error_type, means, vars, skews, skurts, fifths, sixths,

Six, mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts, mix_fifths,
mix_sixths, mix_Six, marginal, support, lam, p_zip, pois_eps, size, prob,
mu, p_zinb, nb_eps, corr.x, corr.yx = list(), corr.e, same.var, subj.var,
int.var, tint.var, betas.0, betas, betas.subj, betas.int, betas.t,
betas.tint)

# Simulated system using correlation method 2
N <- corrsys2(n, M, Time, method, error_type, means, vars, skews, skurts,

fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts,
mix_fifths, mix_sixths, mix_Six, marginal, support, lam, p_zip, pois_eps,
size, prob, mu, p_zinb, nb_eps, corr.x, corr.e, same.var, subj.var,
int.var, tint.var, betas.0, betas, betas.subj, betas.int, betas.t,
betas.tint, seed = seed, use.nearPD = FALSE)

# Summarize the results
S <- summary_sys(N$Y, N$E, E_mix = NULL, N$X, N$X_all, M, method, means,

vars, skews, skurts, fifths, sixths, mix_pis, mix_mus, mix_sigmas,
mix_skews, mix_skurts, mix_fifths, mix_sixths, marginal, support, lam,
p_zip, size, prob, mu, p_zinb, corr.x, corr.e)

## End(Not run)

nonnormsys Generate Correlated Systems of Equations Containing Normal, Non-
Normal, and Mixture Continuous Variables

Description

This function extends the techniques of Headrick and Beasley (2004, doi: 10.1081/SAC120028431)
to create correlated systems of statistical equations containing continuous variables with normal,
non-normal, or mixture distributions. The method allows the user to control the distributions for
the stochastic disturbance (error) terms E and independent variables X . The user specifies the cor-
relation structure between X terms within an outcome and across outcomes. For a given equation,
the user also specifies the correlation between the outcome Y and X terms. These correlations are
used to calculate the beta (slope) coefficients for the equations with calc_betas. If the system con-
tains mixture variables and corr.yx is specified in terms of non-mixture and mixture variables, the
betas will be calculated in terms of non-mixture and mixture independent variables. If corr.yx
Finally, the user specifies the correlations across error terms. The assumptions are that 1) there
are at least 2 equations and a total of at least 1 independent variable, 2) the independent variables
are uncorrelated with the error terms, 3) each equation has an error term, and 4) all error terms
have either a non-mixture or mixture distribution. The outcomes Y are calculated as the E terms
added to the products of the beta coefficients and the X terms. There are no interactions between
independent variables or distinction between subject and group-level terms (as in the hierarchical
linear models approach of corrsys or corrsys2). However, the user does not have to provide the
beta coefficients (except for the intercepts). Since the equations do not include random slopes (i.e.

http://doi.org/10.1081/SAC-120028431
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for the X terms), the effects of the independent variables are all considered "fixed." However, a
random intercept or a "time" effect with a random slope could be added by specifying them as in-
dependent variables. There are no parameter input checks in order to decrease simulation time. All
inputs should be checked prior to simulation with checkpar. Summaries of the simulation results
can be found with summary_sys. The functions calc_corr_y, calc_corr_yx, and calc_corr_ye
use equations from Headrick and Beasley (2004) to calculate the expected correlations for the out-
comes, among a given outcome and covariates from the other outcomes, and for the error terms.
The vignette Theory and Equations for Correlated Systems of Continuous Variables gives the
equations, and the vignette Correlated Systems of Statistical Equations with Non-Mixture and
Mixture Continuous Variables gives examples. There are also vignettes in SimCorrMix which
provide more details on continuous non-mixture and mixture variables.

Usage

nonnormsys(n = 10000, M = NULL, method = c("Fleishman", "Polynomial"),
error_type = c("non_mix", "mix"), means = list(), vars = list(),
skews = list(), skurts = list(), fifths = list(), sixths = list(),
Six = list(), mix_pis = list(), mix_mus = list(), mix_sigmas = list(),
mix_skews = list(), mix_skurts = list(), mix_fifths = list(),
mix_sixths = list(), mix_Six = list(), same.var = NULL,
betas.0 = NULL, corr.x = list(), corr.yx = list(), corr.e = NULL,
seed = 1234, use.nearPD = TRUE, eigmin = 0, adjgrad = FALSE,
B1 = NULL, tau = 0.5, tol = 0.1, steps = 100, msteps = 10,
errorloop = FALSE, epsilon = 0.001, maxit = 1000, quiet = FALSE)

Arguments

n the sample size (i.e. the length of each simulated variable; default = 10000)

M the number of dependent variables Y (outcomes); equivalently, the number of
equations in the system

method the PMT method used to generate all continuous variables, including indepen-
dent variables (covariates) and error terms; "Fleishman" uses Fleishman’s third-
order polynomial transformation and "Polynomial" uses Headrick’s fifth-order
transformation

error_type "non_mix" if all error terms have continuous non-mixture distributions, "mix" if
all error terms have continuous mixture distributions

means a list of length M of vectors of means for the non-mixture (Xcont) and mixture
(Xmix) independent variables and for the error terms (E); the order in each
vector should be: Xcont, Xmix, E so that the order for Xcont, Xmix is the same
as in corr.x (considering the components of mixture variables)

vars a list of length M of vectors of variances for Xcont, Xmix, E; same order and
dimension as means

skews a list of length M of vectors of skew values forXcont andE (if error_type = "non_mix");
same order as in corr.x and means

skurts a list of length M of vectors of standardized kurtoses (kurtosis - 3) for Xcont and
E (if error_type = "non_mix"); same order and dimension as skews
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fifths a list of length M of vectors of standardized fifth cumulants for Xcont and E (if
error_type = "non_mix"); same order and dimension as skews; not necessary
for method = "Fleishman"

sixths a list of length M of vectors of standardized sixth cumulants for Xcont and E (if
error_type = "non_mix"); same order and dimension as skews; not necessary
for method = "Fleishman"

Six a list of length M, where Six[[p]][[j]] is a vector of sixth cumulant correc-
tion values to aid in finding a valid PDF for Xcont(pj), the j-th continuous non-
mixture covariate for outcome Yp; the last element of Six[[p]] is for Ep (if
error_type = "non_mix"); use Six[[p]][[j]] = NULL if no correction
desired for Xcont(pj); use Six[[p]] = NULL if no correction desired for any
non-mixture covariate or error term in equation p; keep Six = list() if no
corrections desired for all covariates or if method = "Fleishman"

mix_pis a list of length M, where mix_pis[[p]][[j]] is a vector of mixing probabilities
that sum to 1 for Xmix(pj), the j-th continuous mixture covariate for outcome
Yp; the last element of mix_pis[[p]] is for Ep (if error_type = "mix"); if
Yp has no mixture variables, use mix_pis[[p]] = NULL; components should be
ordered as in corr.x

mix_mus a list of length M, where mix_mus[[p]][[j]] is a vector of means of the com-
ponent distributions forXmix(pj); the last element of mix_mus[[p]] is forEp (if
error_type = "mix"); if Yp has no mixture variables, use mix_mus[[p]] = NULL

mix_sigmas a list of length M, where mix_sigmas[[p]][[j]] is a vector of standard devia-
tions of the component distributions forXmix(pj); the last element of mix_sigmas[[p]]
is forEp (if error_type = "mix"); if Yp has no mixture variables, use mix_sigmas[[p]] = NULL

mix_skews a list of length M, where mix_skews[[p]][[j]] is a vector of skew values of the
component distributions for Xmix(pj); the last element of mix_skews[[p]] is
forEp (if error_type = "mix"); if Yp has no mixture variables, use mix_skews[[p]] = NULL

mix_skurts a list of length M, where mix_skurts[[p]][[j]] is a vector of standardized kur-
toses of the component distributions forXmix(pj); the last element of mix_skurts[[p]]
is forEp (if error_type = "mix"); if Yp has no mixture variables, use mix_skurts[[p]] = NULL

mix_fifths a list of length M, where mix_fifths[[p]][[j]] is a vector of standardized
fifth cumulants of the component distributions for Xmix(pj); the last element
of mix_fifths[[p]] is for Ep (if error_type = "mix"); if Yp has no mixture
variables, use mix_fifths[[p]] = NULL; not necessary for method = "Fleishman"

mix_sixths a list of length M, where mix_sixths[[p]][[j]] is a vector of standardized
sixth cumulants of the component distributions for Xmix(pj); the last element
of mix_sixths[[p]] is for Ep (if error_type = "mix"); if Yp has no mixture
variables, use mix_sixths[[p]] = NULL; not necessary for method = "Fleishman"

mix_Six a list of length M, where mix_Six[[p]] is a list of length equal to the total num-
ber of component distributions for theXmix(p) andEp (if error_type = "mix");
mix_Six[[p]][[j]] is a vector of sixth cumulant corrections for the j-th com-
ponent distribution (i.e., if there are 2 continuous mixture independent variables
for Yp, where Xmix(p1) has 2 components and Xmix(p2) has 3 components,
then length(mix_Six[[p]]) = 5 and mix_Six[[p]][[3]] would correspond
to the 1st component of Xmix(p2)); use mix_Six[[p]][[j]] = NULL if no cor-
rection desired for that component; use mix_Six[[p]] = NULL if no correction
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desired for any component of Xmix(p) and Ep; keep mix_Six = list() if no
corrections desired for all covariates or if method = "Fleishman"

same.var either a vector or a matrix; if a vector, same.var includes column numbers of
corr.x[[1]][[1]] corresponding to independent variables that should be iden-
tical across equations; these terms must have the same indices for all p = 1, ..., M;
i.e., if the 1st variable represents height which should be the same for each
equation, then same.var[1] = 1 and the 1st term for all other outcomes
must also be height; if a matrix, columns 1 and 2 are outcome p and col-
umn index in corr.x[[p]][[p]] for 1st instance of variable, columns 3 and
4 are outcome q and column index in corr.x[[q]][[q]] for subsequent in-
stances of variable; i.e., if 1st term for all outcomes is height and M = 3, then
same.var = matrix(c(1, 1, 2, 1, 1, 1, 3, 1), 2, 4, byrow = TRUE);
the independent variable index corresponds to continuous non-mixture and com-
ponent of continuous mixture covariate

betas.0 vector of length M containing intercepts, if NULL all set equal to 0; if length 1, all
intercepts set to betas.0

corr.x list of length M, each component a list of length M; corr.x[[p]][[q]] is ma-
trix of correlations for independent variables in equations p (X(pj) for out-
come Yp) and q (X(qj) for outcome Yq); order: 1st continuous non-mixture
(same order as in skews) and 2nd components of continuous mixture (same or-
der as in mix_pis); if p = q, corr.x[[p]][[q]] is a correlation matrix with
nrow(corr.x[[p]][[q]]) = # of non-mixture + # of mixture components for
outcome Yp; if p != q, corr.x[[p]][[q]] is a non-symmetric matrix of correla-
tions where rows correspond to covariates for Yp so that nrow(corr.x[[p]][[q]])
= # of non-mixture + # of mixture components for outcome Yp and columns
correspond to covariates for Yq so that ncol(corr.x[[p]][[q]]) = # of non-
mixture + # of mixture components for outcome Yq; use corr.x[[p]][[q]] = NULL
if equation q has no X(qj); use corr.x[[p]] = NULL if equation p has no X(pj)

corr.yx a list of length M, where the p-th component is a 1 row matrix of correlations
between Yp and X(pj); if there are mixture variables and the betas are desired
in terms of these (and not the components), then corr.yx should be specified in
terms of correlations between outcomes and non-mixture or mixture variables,
and the number of columns of the matrices of corr.yx should not match the
dimensions of the matrices in corr.x; if the betas are desired in terms of the
components, then corr.yx should be specified in terms of correlations between
outcomes and non-mixture or components of mixture variables, and the num-
ber of columns of the matrices of corr.yx should match the dimensions of the
matrices in corr.x; use corr.yx[[p]] = NULL if equation p has no X(pj)

corr.e correlation matrix for continuous non-mixture or components of mixture error
terms

seed the seed value for random number generation (default = 1234)
use.nearPD TRUE to convert the overall intermediate correlation matrix formed by the X

(for all outcomes and independent variables) orE to the nearest positive definite
matrix with Matrix::nearPD if necessary; if FALSE and adjgrad = FALSE the
negative eigenvalues are replaced with eigmin if necessary

eigmin minimum replacement eigenvalue if overall intermediate correlation matrix is
not positive-definite (default = 0)
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adjgrad TRUE to use adj_grad to convert overall intermediate correlation matrix to a
positive-definite matrix and next 5 inputs can be used

B1 the initial matrix for algorithm; if NULL, uses a scaled initial matrix with diag-
onal elements sqrt(nrow(Sigma))/2

tau parameter used to calculate theta (default = 0.5)

tol maximum error for Frobenius norm distance between new matrix and original
matrix (default = 0.1)

steps maximum number of steps for k (default = 100)

msteps maximum number of steps for m (default = 10)

errorloop if TRUE, uses corr_error to attempt to correct the correlation of the inde-
pendent variables within and across outcomes to be within epsilon of the tar-
get correlations corr.x until the number of iterations reaches maxit (default =
FALSE)

epsilon the maximum acceptable error between the final and target correlation matrices
(default = 0.001) in the error loop

maxit the maximum number of iterations to use (default = 1000) in the error loop

quiet if FALSE prints messages, if TRUE suppresses messages

Value

A list with the following components:

Y matrix with n rows and M columns of outcomes

X list of length M containing Xcont(pj), Xcomp(pj)

X_all list of length M containing Xcont(pj), Xmix(pj)

E matrix with n rows containing continuous non-mixture or components of continuous mixture error
terms

E_mix matrix with n rows containing continuous mixture error terms

betas a matrix of the slope coefficients calculated with calc_betas, rows represent the outcomes

constants a list of length M with data.frames of the constants for the Xcont(pj), Xcomp(pj) and
Ep

SixCorr a list of length M of lists of sixth cumulant correction values used to obtain valid pdf ’s for
the Xcont(pj), Xcomp(pj), and Ep

valid.pdf a list of length M of vectors where the i-th element is "TRUE" if the constants for the
i-th continuous variable generate a valid pdf, else "FALSE"

Sigma_X0 matrix of intermediate correlations calculated by intercorr

Sigma_X matrix of intermediate correlations after nearPD or adj_grad function has been used;
applied to generate the normal variables transformed to get the desired distributions

Error_Time the time in minutes required to use the error loop

Time the total simulation time in minutes

niter a matrix of the number of iterations used in the error loop
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Generation of Continuous Non-Mixture and Mixture Variables

Mixture distributions describe random variables that are drawn from more than one component
distribution. For a random variable Xmix from a finite continuous mixture distribution with k
components, the probability density function (PDF) can be described by:

hX(x) =

k∑
i=1

πifXcompi
(x),

k∑
i=1

πi = 1.

The πi are mixing parameters which determine the weight of each component distribution fXcompi
(x)

in the overall probability distribution. As long as each component has a valid PDF, the overall distri-
bution hX() has a valid PDF. The main assumption is statistical independence between the process
of randomly selecting the component distribution and the distributions themselves. Simulation is
done at the component-level for mixture variables.

All continuous variables are simulated using either Fleishman’s third-order (method = "Fleishman",
doi: 10.1007/BF02293811) or Headrick’s fifth-order (method = "Polynomial", doi: 10.1016/S0167-
9473(02)000725) power method transformation (PMT). It works by matching standardized cumu-
lants – the first four (mean, variance, skew, and standardized kurtosis) for Fleishman’s method, or
the first six (mean, variance, skew, standardized kurtosis, and standardized fifth and sixth cumu-
lants) for Headrick’s method. The transformation is expressed as follows:

Y = c0 + c1 ∗ Z + c2 ∗ Z2 + c3 ∗ Z3 + c4 ∗ Z4 + c5 ∗ Z5, Z ∼ N(0, 1),

where c4 and c5 both equal 0 for Fleishman’s method. The real constants are calculated by find_constants
for non-mixture and components of mixture variables. Continuous mixture variables are generated
componentwise and then transformed to the desired mixture variables using random multinomial
variables generated based on mixing probabilities. The correlation matrices are specified in terms
of correlations with components of the mixture variables.

Choice of Fleishman’s third-order or Headrick’s fifth-order method

Using the fifth-order approximation allows additional control over the fifth and sixth moments of
the generated distribution, improving accuracy. In addition, the range of feasible standardized
kurtosis values, given skew and standardized fifth (γ3) and sixth (γ4) cumulants, is larger than
with Fleishman’s method (see calc_lower_skurt). For example, the Fleishman method can not
be used to generate a non-normal distribution with a ratio of γ23/γ4 > 9/14 (see Headrick &
Kowalchuk, 2007). This eliminates the Chi-squared family of distributions, which has a constant
ratio of γ23/γ4 = 2/3. The fifth-order method also generates more distributions with valid PDF’s.
However, if the fifth and sixth cumulants are unknown or do not exist, the Fleishman approximation
should be used.

Reasons for Function Errors

1) The most likely cause for function errors is that the parameter inputs are mispecified. Using
checkpar prior to simulation can help decrease these errors.

2) No solutions to fleish or poly converged when using find_constants. If this happens, the
simulation will stop. It may help to first use find_constants for each continuous variable to deter-
mine if a sixth cumulant correction value is needed. If the standardized cumulants are obtained from

http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1016/S0167-9473(02)00072-5
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calc_theory, the user may need to use rounded values as inputs (i.e. skews = round(skews, 8)).
For example, in order to ensure that skew is exactly 0 for symmetric distributions.

3) The kurtosis for a continuous variable may be outside the region of possible values. There is an
associated lower kurtosis boundary for associated with a given skew (for Fleishman’s method) or
skew and fifth and sixth cumulants (for Headrick’s method). Use calc_lower_skurt to determine
the boundary for a given set of cumulants.

4) No solutions to calc_betas converged when trying to find the beta coefficients. Try different
correlation matrices.

References

Davenport JW, Bezder JC, & Hathaway RJ (1988). Parameter Estimation for Finite Mixture Distri-
butions. Computers & Mathematics with Applications, 15(10):819-28.

Everitt BS (1996). An Introduction to Finite Mixture Distributions. Statistical Methods in Medical
Research, 5(2):107-127. doi: 10.1177/096228029600500202.

Fialkowski AC (2017). SimMultiCorrData: Simulation of Correlated Data with Multiple Variable
Types. R package version 0.2.1. https://CRAN.R-project.org/package=SimMultiCorrData.

Fialkowski AC (2018). SimCorrMix: Simulation of Correlated Data of Multiple Variable Types in-
cluding Continuous and Count Mixture Distributions. R package version 0.1.0. https://github.
com/AFialkowski/SimCorrMix

Fleishman AI (1978). A Method for Simulating Non-normal Distributions. Psychometrika, 43:521-
532. doi: 10.1007/BF02293811.

Headrick TC (2002). Fast Fifth-order Polynomial Transforms for Generating Univariate and Mul-
tivariate Non-normal Distributions. Computational Statistics & Data Analysis, 40(4):685-711.
doi: 10.1016/S01679473(02)000725. (ScienceDirect)

Headrick TC (2004). On Polynomial Transformations for Simulating Multivariate Nonnormal Dis-
tributions. Journal of Modern Applied Statistical Methods, 3(1):65-71. doi: 10.22237/jmasm/
1083370080.

Headrick TC, Beasley TM (2004). A Method for Simulating Correlated Non-Normal Systems of
Linear Statistical Equations. Communications in Statistics - Simulation and Computation, 33(1).
doi: 10.1081/SAC120028431

Headrick TC, Kowalchuk RK (2007). The Power Method Transformation: Its Probability Den-
sity Function, Distribution Function, and Its Further Use for Fitting Data. Journal of Statistical
Computation and Simulation, 77:229-249. doi: 10.1080/10629360600605065.

Headrick TC, Sawilowsky SS (1999). Simulating Correlated Non-normal Distributions: Extending
the Fleishman Power Method. Psychometrika, 64:25-35. doi: 10.1007/BF02294317.

Headrick TC, Sheng Y, & Hodis FA (2007). Numerical Computing and Graphics for the Power
Method Transformation Using Mathematica. Journal of Statistical Software, 19(3):1 - 17.
doi: 10.18637/jss.v019.i03.

Higham N (2002). Computing the nearest correlation matrix - a problem from finance; IMA Journal
of Numerical Analysis 22:329-343.

McCulloch CE, Searle SR, Neuhaus JM (2008). Generalized, Linear, and Mixed Models (2nd ed.).
Wiley Series in Probability and Statistics. Hoboken, New Jersey: John Wiley & Sons, Inc.

http://doi.org/10.1177/096228029600500202
https://CRAN.R-project.org/package=SimMultiCorrData
https://github.com/AFialkowski/SimCorrMix
https://github.com/AFialkowski/SimCorrMix
http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
http://www.sciencedirect.com/science/article/pii/S0167947302000725
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.22237/jmasm/1083370080
http://doi.org/10.1081/SAC-120028431
http://doi.org/10.1080/10629360600605065
http://doi.org/10.1007/BF02294317
http://doi.org/10.18637/jss.v019.i03


58 nonnormsys

Pearson RK (2011). Exploring Data in Engineering, the Sciences, and Medicine. In. New York:
Oxford University Press.

Schork NJ, Allison DB, & Thiel B (1996). Mixture Distributions in Human Genetics Research.
Statistical Methods in Medical Research, 5:155-178. doi: 10.1177/096228029600500204.

Vale CD & Maurelli VA (1983). Simulating Multivariate Nonnormal Distributions. Psychometrika,
48:465-471. doi: 10.1007/BF02293687.

See Also

calc_betas, calc_corr_y, calc_corr_yx, calc_corr_ye, checkpar, summary_sys

Examples

M <- 3
B <- calc_theory("Beta", c(4, 1.5))
skews <- lapply(seq_len(M), function(x) c(0, B[3]))
skurts <- lapply(seq_len(M), function(x) c(0, B[4]))
fifths <- lapply(seq_len(M), function(x) c(0, B[5]))
sixths <- lapply(seq_len(M), function(x) c(0, B[6]))
Six <- lapply(seq_len(M), function(x) list(NULL, 0.03))
corr.e <- matrix(c(1, 0.4, 0.4^2, 0.4, 1, 0.4, 0.4^2, 0.4, 1), M, M,

byrow = TRUE)
means <- lapply(seq_len(M), function(x) c(0, B[1]))
vars <- lapply(seq_len(M), function(x) c(1, B[2]^2))
corr.x <- list(list(matrix(1, 1, 1), matrix(0.4, 1, 1), matrix(0.4, 1, 1)),

list(matrix(0.4, 1, 1), matrix(1, 1, 1), matrix(0.4, 1, 1)),
list(matrix(0.4, 1, 1), matrix(0.4, 1, 1), matrix(1, 1, 1)))

corr.yx <- list(matrix(0.4, 1), matrix(0.5, 1), matrix(0.6, 1))
Sys1 <- nonnormsys(10000, M, "Polynomial", "non_mix", means, vars,

skews, skurts, fifths, sixths, Six, corr.x = corr.x, corr.yx = corr.yx,
corr.e = corr.e)

## Not run:
# Example: system of three equations for 2 independent variables, where each
# error term has unit variance, from Headrick & Beasley (2002)
# Y_1 = beta_10 + beta_11 * X_11 + beta_12 * X_12 + sigma_1 * e_1
# Y_2 = beta_20 + beta_21 * X_21 + beta_22 * X_22 + sigma_2 * e_2
# Y_3 = beta_30 + beta_31 * X_31 + beta_32 * X_32 + sigma_3 * e_3

# X_11 = X_21 = X_31 = Exponential(2)
# X_12 = X_22 = X_32 = Laplace(0, 1)
# e_1 = e_2 = e_3 = Cauchy(0, 1)

seed <- 1234
M <- 3
Stcum1 <- calc_theory("Exponential", 2)
Stcum2 <- calc_theory("Laplace", c(0, 1))
Stcum3 <- c(0, 1, 0, 25, 0, 1500) # taken from paper
means <- lapply(seq_len(M), function(x) c(0, 0, 0))
vars <- lapply(seq_len(M), function(x) c(1, 1, 1))
skews <- lapply(seq_len(M), function(x) c(Stcum1[3], Stcum2[3], Stcum3[3]))
skurts <- lapply(seq_len(M), function(x) c(Stcum1[4], Stcum2[4], Stcum3[4]))

http://doi.org/10.1177/096228029600500204
http://doi.org/10.1007/BF02293687
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fifths <- lapply(seq_len(M), function(x) c(Stcum1[5], Stcum2[5], Stcum3[5]))
sixths <- lapply(seq_len(M), function(x) c(Stcum1[6], Stcum2[6], Stcum3[6]))

# No sixth cumulant corrections will be used in order to match the results
# from the paper.

corr.yx <- list(matrix(c(0.4, 0.4), 1), matrix(c(0.5, 0.5), 1),
matrix(c(0.6, 0.6), 1))

corr.x <- list()
corr.x[[1]] <- corr.x[[2]] <- corr.x[[3]] <- list()
corr.x[[1]][[1]] <- matrix(c(1, 0.1, 0.1, 1), 2, 2)
corr.x[[1]][[2]] <- matrix(c(0.1974318, 0.1859656, 0.1879483, 0.1858601),

2, 2, byrow = TRUE)
corr.x[[1]][[3]] <- matrix(c(0.2873190, 0.2589830, 0.2682057, 0.2589542),

2, 2, byrow = TRUE)
corr.x[[2]][[1]] <- t(corr.x[[1]][[2]])
corr.x[[2]][[2]] <- matrix(c(1, 0.35, 0.35, 1), 2, 2)
corr.x[[2]][[3]] <- matrix(c(0.5723303, 0.4883054, 0.5004441, 0.4841808),

2, 2, byrow = TRUE)
corr.x[[3]][[1]] <- t(corr.x[[1]][[3]])
corr.x[[3]][[2]] <- t(corr.x[[2]][[3]])
corr.x[[3]][[3]] <- matrix(c(1, 0.7, 0.7, 1), 2, 2)
corr.e <- matrix(0.4, nrow = 3, ncol = 3)
diag(corr.e) <- 1

# Check the parameter inputs
checkpar(M, "Polynomial", "non_mix", means, vars, skews,

skurts, fifths, sixths, corr.x = corr.x, corr.yx = corr.yx,
corr.e = corr.e)

# Generate the system
Sys1 <- nonnormsys(10000, M, "Polynomial", "non_mix", means, vars, skews,

skurts, fifths, sixths, corr.x = corr.x, corr.yx = corr.yx,
corr.e = corr.e, seed = seed)

# Summarize the results
Sum1 <- summary_sys(Sys1$Y, Sys1$E, E_mix = NULL, Sys1$X, X_all = list(), M,

"Polynomial", means, vars, skews, skurts, fifths, sixths, corr.x = corr.x,
corr.e = corr.e)

# Calculate theoretical correlations for comparison to simulated values
calc_corr_y(Sys1$betas, corr.x, corr.e, vars)
Sum1$rho.y
calc_corr_ye(Sys1$betas, corr.x, corr.e, vars)
Sum1$rho.ye
calc_corr_yx(Sys1$betas, corr.x, vars)
Sum1$rho.yx

## End(Not run)

SimRepeat Simulation of Correlated Systems of Statistical Equations with Multi-
ple Variable Types
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Description

Generate correlated systems of statistical equations which represent repeated measurements or
clustered data. These systems contain either: a) continuous normal, non-normal, and mixture vari-
ables based on the techniques of Headrick and Beasley (2004, doi: 10.1081/SAC120028431) or b)
continuous (normal, non-normal and mixture), ordinal, and count (regular or zero-inflated, Poisson
and Negative Binomial) variables based on the hierarchical linear models (HLM) approach. Head-
rick and Beasley’s method for continuous variables calculates the beta (slope) coefficients based on
the target correlations between independent variables and between outcomes and independent vari-
ables. The package provides functions to calculate the expected correlations between outcomes,
between outcomes and error terms, and between outcomes and independent variables, extending
Headrick and Beasley’s equations to include mixture variables. These theoretical values can be
compared to the simulated correlations. The HLM approach requires specification of the beta coef-
ficients, but permits group and subject-level independent variables, interactions among independent
variables, and fixed and random effects, providing more flexibility in the system of equations. Both
methods permit simulation of data sets that mimic real-world clinical or genetic data sets (i.e. plas-
modes, as in Vaughan et al., 2009, doi: 10.1016/j.csda.2008.02.032).

The techniques extend those found in the SimMultiCorrData and SimCorrMix packages. Stan-
dard normal variables with an imposed intermediate correlation matrix are transformed to generate
the desired distributions. Continuous variables are simulated using either Fleishman’s third-order
(doi: 10.1007/BF02293811) or Headrick’s fifth-order (doi: 10.1016/S01679473(02)000725) power
method transformation (PMT). Simulation occurs at the component-level for continuous mixture
distributions. These components are transformed into the desired mixture variables using random
multinomial variables based on the mixing probabilities. The target correlation matrices are speci-
fied in terms of correlations with components of continuous mixture variables. Binary and ordinal
variables are simulated by discretizing the normal variables at quantiles defined by the marginal
distributions. Count variables are simulated using the inverse CDF method.

There are two simulation pathways for the multi-variable type systems which differ by intermedi-
ate correlations involving count variables. Correlation Method 1 adapts Yahav and Shmueli’s 2012
method (doi: 10.1002/asmb.901) and performs best with large count variable means and positive
correlations or small means and negative correlations. Correlation Method 2 adapts Barbiero and
Ferrari’s 2015 modification of GenOrd-package (doi: 10.1002/asmb.2072) and performs best un-
der the opposite scenarios. There are three methods available for correcting non-positive definite
correlation matrices. The optional error loop may be used to improve the accuracy of the final cor-
relation matrices. The package also provides function to check parameter inputs and summarize the
generated systems of equations.

Vignettes

There are vignettes which accompany this package that may help the user understand the simulation
and analysis methods.

1) Theory and Equations for Correlated Systems of Continuous Variables describes the system
of continuous variables generated with nonnormsys and derives the equations used in calc_betas,
calc_corr_y, calc_corr_ye, and calc_corr_yx.

2) Correlated Systems of Statistical Equations with Non-Mixture and Mixture Continuous
Variables provides examples of using nonnormsys.

3) The Hierarchical Linear Models Approach for a System of Correlated Equations with Mul-
tiple Variable Types describes the system of ordinal, continuous, and count variables generated

http://doi.org/10.1081/SAC-120028431
http://doi.org/10.1016/j.csda.2008.02.032
http://doi.org/10.1007/BF02293811
http://doi.org/10.1016/S0167-9473(02)00072-5
http://doi.org/10.1002/asmb.901
http://doi.org/10.1002/asmb.2072
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with corrsys and corrsys2.

4) Correlated Systems of Statistical Equations with Multiple Variable Types provides examples
of using corrsys and corrsys2.

Functions

This package contains 3 simulation functions:

nonnormsys, corrsys, corrsys2

4 support functions for nonnormsys:

calc_betas, calc_corr_y, calc_corr_ye, calc_corr_yx

1 parameter check function:

checkpar

1 summary function:

summary_sys

1 correction function for non-PD correlation matrices:

adj_grad
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Description

This function summarizes the results of nonnormsys, corrsys, or corrsys2. The inputs are either
the simulated variables or inputs for those functions. See their documentation for more information.
If only selected descriptions are desired, keep the non-relevant parameter inputs at their defaults.
For example, if only a description of the error terms are desired, error_type = "non_mix", and
method = "Polynomial", specify E, M, method, means, vars, skews, skurts, fifths, sixths, corr.e.

Usage

summary_sys(Y = NULL, E = NULL, E_mix = NULL, X = list(),
X_all = list(), M = NULL, method = c("Fleishman", "Polynomial"),
means = list(), vars = list(), skews = list(), skurts = list(),
fifths = list(), sixths = list(), mix_pis = list(), mix_mus = list(),
mix_sigmas = list(), mix_skews = list(), mix_skurts = list(),
mix_fifths = list(), mix_sixths = list(), marginal = list(),
support = list(), lam = list(), p_zip = list(), size = list(),
prob = list(), mu = list(), p_zinb = list(), corr.x = list(),
corr.e = NULL, U = list(), U_all = list(), rand.int = c("none",
"non_mix", "mix"), rand.tsl = c("none", "non_mix", "mix"),
corr.u = list(), rmeans2 = list(), rvars2 = list())

Arguments

Y the matrix of outcomes simulated with corrsys or corrsys2

E the matrix of continuous non-mixture or components of mixture error terms

E_mix the matrix of continuous mixture error terms

X a list of length M where X[[p]] = cbind(X_cat(pj), X_cont(pj), X_comp(pj), X_pois(pj), X_nb(pj));
keep X[[p]] = NULL if Yp has no independent variables

X_all a list of length M where X_all[[p]] contains all independent variables, inter-
actions, and time for Yp; keep X_all[[p]] = NULL if Yp has no independent
variables

M the number of dependent variables Y (outcomes); equivalently, the number of
equations in the system

method the PMT method used to generate all continuous variables, including indepen-
dent variables (covariates), error terms, and random effects; "Fleishman" uses
Fleishman’s third-order polynomial transformation and "Polynomial" uses Head-
rick’s fifth-order transformation

means if no random effects, a list of length M where means[[p]] contains a vector of
means for the continuous independent variables in equation p with non-mixture
(Xcont) or mixture (Xmix) distributions and for the error terms (E); order in
vector is Xcont, Xmix, E

if there are random effects, a list of length M + 1 if the effects are the same across
equations or 2 * M if they differ; where means[M + 1] or means[(M + 1):(2 * M)]
are vectors of means for all random effects with continuous non-mixture or mix-
ture distributions; order in vector is 1st random interceptU0 (if rand.int != "none"),
2nd random time slope U1 (if rand.tsl != "none"), 3rd other random slopes
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with non-mixture distributions Ucont, 4th other random slopes with mixture dis-
tributions Umix

vars a list of same length and order as means containing vectors of variances for the
continuous variables, error terms, and any random effects

skews if no random effects, a list of length M where skews[[p]] contains a vector of
skew values for the continuous independent variables in equation p with non-
mixture (Xcont) distributions and for E if error_type = "non_mix"; order in
vector is Xcont, E

if there are random effects, a list of length M + 1 if the effects are the same across
equations or 2 * M if they differ; where skews[M + 1] or skews[(M + 1):(2 * M)]
are vectors of skew values for all random effects with continuous non-mixture
distributions; order in vector is 1st random interceptU0 (if rand.int = "non_mix"),
2nd random time slopeU1 (if rand.tsl = "non_mix"), 3rd other random slopes
with non-mixture distributions Ucont

skurts a list of same length and order as skews containing vectors of standardized kur-
toses (kurtosis - 3) for the continuous variables, error terms, and any random
effects with non-mixture distributions

fifths a list of same length and order as skews containing vectors of standardized fifth
cumulants for the continuous variables, error terms, and any random effects with
non-mixture distributions; not necessary for method = "Fleishman"

sixths a list of same length and order as skews containing vectors of standardized sixth
cumulants for the continuous variables, error terms, and any random effects with
non-mixture distributions; not necessary for method = "Fleishman"

mix_pis list of length M, M + 1 or 2 * M, where mix_pis[1:M] are for Xcont, E (if
error_type = "mix") and mix_pis[M + 1] or mix_pis[(M + 1):(2 * M)]
are for mixture U ; use mix_pis[[p]] = NULL if equation p has no continuous
mixture terms if error_type = "non_mix" and there are only random effects
(i.e., length(corr.x) = 0), use mix_pis[1:M] = NULL so that mix_pis[M + 1]
or mix_pis[(M + 1):(2 * M)] describes the mixture U ;
mix_pis[[p]][[j]] is a vector of mixing probabilities of the component distri-
butions for Xmix(pj), the j-th mixture covariate for outcome Yp; the last vector
in mix_pis[[p]] is for Ep (if error_type = "mix"); components should be
ordered as in corr.x

mix_pis[[M + p]][[j]] is a vector of mixing probabilities of the component
distributions for U(pj), the j-th random effect with a mixture distribution for
outcome Yp; order is 1st random intercept (if rand.int = "mix"), 2nd ran-
dom time slope (if rand.tsl = "mix"), 3rd other random slopes with mixture
distributions; components should be ordered as in corr.u

mix_mus list of same length and order as mix_pis;
mix_mus[[p]][[j]] is a vector of means of the component distributions for
Xmix(pj), the last vector in mix_mus[[p]] is for Ep (if error_type = "mix")
mix_mus[[p]][[j]] is a vector of means of the component distributions for
Umix(pj)

mix_sigmas list of same length and order as mix_pis;
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mix_sigmas[[p]][[j]] is a vector of standard deviations of the component
distributions for Xmix(pj), the last vector in mix_sigmas[[p]] is for Ep (if
error_type = "mix")
mix_sigmas[[p]][[j]] is a vector of standard deviations of the component
distributions for Umix(pj)

mix_skews list of same length and order as mix_pis;
mix_skews[[p]][[j]] is a vector of skew values of the component distribu-
tions forXmix(pj), the last vector in mix_skews[[p]] is forEp (if error_type = "mix")
mix_skews[[p]][[j]] is a vector of skew values of the component distribu-
tions for Umix(pj)

mix_skurts list of same length and order as mix_pis;
mix_skurts[[p]][[j]] is a vector of standardized kurtoses of the component
distributions for Xmix(pj), the last vector in mix_skurts[[p]] is for Ep (if
error_type = "mix")
mix_skurts[[p]][[j]] is a vector of standardized kurtoses of the component
distributions for Umix(pj)

mix_fifths list of same length and order as mix_pis; not necessary for method = "Fleishman";
mix_fifths[[p]][[j]] is a vector of standardized fifth cumulants of the com-
ponent distributions for Xmix(pj), the last vector in mix_fifths[[p]] is for Ep

(if error_type = "mix")
mix_fifths[[p]][[j]] is a vector of standardized fifth cumulants of the com-
ponent distributions for Umix(pj)

mix_sixths list of same length and order as mix_pis; not necessary for method = "Fleishman";
mix_sixths[[p]][[j]] is a vector of standardized sixth cumulants of the com-
ponent distributions for Xmix(pj), the last vector in mix_sixths[[p]] is for Ep

(if error_type = "mix")
mix_sixths[[p]][[j]] is a vector of standardized sixth cumulants of the com-
ponent distributions for Umix(pj)

marginal a list of length M, with the p-th component a list of cumulative probabilities for
the ordinal variables associated with outcome Yp (use marginal[[p]] = NULL
if outcome Yp has no ordinal variables); marginal[[p]][[j]] is a vector of the
cumulative probabilities defining the marginal distribution of Xord(pj), the j-th
ordinal variable for outcome Yp; if the variable can take r values, the vector will
contain r - 1 probabilities (the r-th is assumed to be 1); for binary variables, the
probability is the probability of the 1st category, which has the smaller support
value; length(marginal[[p]]) can differ across outcomes; the order should
be the same as in corr.x

support a list of length M, with the p-th component a list of support values for the ordinal
variables associated with outcome Yp; use support[[p]] = NULL if outcome
Yp has no ordinal variables; support[[p]][[j]] is a vector of the support val-
ues defining the marginal distribution of Xord(pj), the j-th ordinal variable for
outcome Yp; if not provided, the default for r categories is 1, ..., r

lam list of length M, p-th component a vector of lambda (means > 0) values for Pois-
son variables for outcome Yp (see stats::dpois); order is 1st regular Poisson
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and 2nd zero-inflated Poisson; use lam[[p]] = NULL if outcome Yp has no Pois-
son variables; length(lam[[p]]) can differ across outcomes; the order should
be the same as in corr.x

p_zip a list of vectors of probabilities of structural zeros (not including zeros from the
Poisson distribution) for the zero-inflated Poisson variables (see VGAM::dzipois);
if p_zip = 0, Ypois has a regular Poisson distribution; if p_zip is in (0, 1), Ypois
has a zero-inflated Poisson distribution; if p_zip is in (-(exp(lam) - 1)^(-1), 0),
Ypois has a zero-deflated Poisson distribution and p_zip is not a probability; if
p_zip = -(exp(lam) - 1)^(-1), Ypois has a positive-Poisson distribution (see
VGAM::dpospois); order is 1st regular Poisson and 2nd zero-inflated Poisson; if
a single number, all Poisson variables given this value; if a vector of length M,
all Poisson variables in equation p given p_zip[p]; otherwise, missing values
are set to 0 and ordered 1st

size list of length M, p-th component a vector of size parameters for the Negative
Binomial variables for outcome Yp (see stats::nbinom); order is 1st regular
NB and 2nd zero-inflated NB; use size[[p]] = NULL if outcome Yp has no
Negative Binomial variables; length(size[[p]]) can differ across outcomes;
the order should be the same as in corr.x

prob list of length M, p-th component a vector of success probabilities for the Negative
Binomial variables for outcome Yp (see stats::nbinom); order is 1st regular
NB and 2nd zero-inflated NB; use prob[[p]] = NULL if outcome Yp has no
Negative Binomial variables; length(prob[[p]]) can differ across outcomes;
the order should be the same as in corr.x

mu list of length M, p-th component a vector of mean values for the Negative Bi-
nomial variables for outcome Yp (see stats::nbinom); order is 1st regular NB
and 2nd zero-inflated NB; use mu[[p]] = NULL if outcome Yp has no Negative
Binomial variables; length(mu[[p]]) can differ across outcomes; the order
should be the same as in corr.x; for zero-inflated NB variables, this refers to
the mean of the NB distribution (see VGAM::dzinegbin) (*Note: either prob or
mu should be supplied for all Negative Binomial variables, not a mixture)

p_zinb a vector of probabilities of structural zeros (not including zeros from the NB dis-
tribution) for the zero-inflated NB variables (see VGAM::dzinegbin); if p_zinb
= 0, Ynb has a regular NB distribution; if p_zinb is in (-prob^size/(1 - prob^size),
0), Ynb has a zero-deflated NB distribution and p_zinb is not a probability; if
p_zinb = -prob^size/(1 - prob^size), Ynb has a positive-NB distribution
(see VGAM::dposnegbin); order is 1st regular NB and 2nd zero-inflated NB; if
a single number, all NB variables given this value; if a vector of length M, all NB
variables in equation p given p_zinb[p]; otherwise, missing values are set to 0
and ordered 1st

corr.x list of length M, each component a list of length M; corr.x[[p]][[q]] is ma-
trix of correlations for independent variables in equations p (X(pj) for out-
come Yp) and q (X(qj) for outcome Yq); order: 1st ordinal (same order as in
marginal), 2nd continuous non-mixture (same order as in skews), 3rd com-
ponents of continuous mixture (same order as in mix_pis), 4th regular Pois-
son, 5th zero-inflated Poisson (same order as in lam), 6th regular NB, and 7th
zero-inflated NB (same order as in size); if p = q, corr.x[[p]][[q]] is a
correlation matrix with nrow(corr.x[[p]][[q]]) = # X(pj) for outcome Yp;
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if p != q, corr.x[[p]][[q]] is a non-symmetric matrix of correlations where
rows correspond to covariates for Yp so that nrow(corr.x[[p]][[q]]) = #
X(pj) for outcome Yp and columns correspond to covariates for Yq so that
ncol(corr.x[[p]][[q]]) = #X(qj) for outcome Yq; use corr.x[[p]][[q]] = NULL
if equation q has no X(qj); use corr.x[[p]] = NULL if equation p has no X(pj)

corr.e correlation matrix for continuous non-mixture or components of mixture error
terms

U a list of length M of continuous non-mixture and components of mixture random
effects

U_all a list of length M of continuous non-mixture and mixture random effects

rand.int "none" (default) if no random intercept term for all outcomes, "non_mix" if
all random intercepts have a continuous non-mixture distribution, "mix" if all
random intercepts have a continuous mixture distribution; also can be a vector
of length M containing a combination (i.e., c("non_mix", "mix", "none") if
the 1st has a non-mixture distribution, the 2nd has a mixture distribution, and
3rd outcome has no random intercept)

rand.tsl "none" (default) if no random slope for time for all outcomes, "non_mix" if
all random time slopes have a continuous non-mixture distribution, "mix" if all
random time slopes have a continuous mixture distribution; also can be a vector
of length M as in rand.int

corr.u if the random effects are the same variables across equations, a matrix of cor-
relations for U ; if the random effects are different variables across equations, a
list of length M, each component a list of length M; corr.u[[p]][[q]] is ma-
trix of correlations for random effects in equations p (U(pj) for outcome Yp)
and q (U(qj) for outcome Yq); if p = q, corr.u[[p]][[q]] is a correlation
matrix with nrow(corr.u[[p]][[q]]) = # U(pj) for outcome Yp; if p != q,
corr.u[[p]][[q]] is a non-symmetric matrix of correlations where rows cor-
respond toU(pj) for Yp so that nrow(corr.u[[p]][[q]]) = #U(pj) for outcome
Yp and columns correspond to U(qj) for Yq so that ncol(corr.u[[p]][[q]])
= # U(qj) for outcome Yq; the number of random effects for Yp is taken from
nrow(corr.u[[p]][[1]]) so that if there should be random effects, there must
be entries for corr.u; use corr.u[[p]][[q]] = NULL if equation q has no
U(qj); use corr.u[[p]] = NULL if equation p has no U(pj);
correlations are specified in terms of components of mixture variables (if present);
order is 1st random intercept (if rand.int != "none"), 2nd random time slope
(if rand.tsl != "none"), 3rd other random slopes with non-mixture distribu-
tions, 4th other random slopes with mixture distributions

rmeans2 a list returned from corrsys or corrsys2 which has the non-mixture and com-
ponent means ordered according to types of random intercept and time slope

rvars2 a list returned like rmeans

Value

A list with the following components:

cont_sum_y a data.frame summarizing the simulated distributions of the Yp,
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cont_sum_e a data.frame summarizing the simulated distributions of the non-mixture or compo-
nents of mixture Ep,

target_sum_e a data.frame summarizing the target distributions of the non-mixture or components
of mixture Ep,

mix_sum_e a data.frame summarizing the simulated distributions of the mixture Ep,

target_mix_e a data.frame summarizing the target distributions of the mixture Ep,

rho.y correlation matrix of dimension M x M for Yp
rho.e correlation matrix for the non-mixture or components of mixture Ep

rho.emix correlation matrix for the mixture Ep

rho.ye matrix with correlations between Yp (rows) and the non-mixture or components of mixture
Ep (columns)

rho.yemix matrix with correlations between Yp (rows) and the mixture Ep (columns)

sum_xall a data.frame summarizing X_all without the Time variable,

rho.yx a list of length M, where rho.yx[[p]] is matrix of correlations between Y (rows) and
X[[p]] = Xord(pj), Xcont(pj), Xcomp(pj), Xpois(pj), Xnb(pj) (columns)

rho.yxall a list of length M, where rho.yx[[p]] is matrix of correlations between Y (rows) and
X_all[[p]] (columns) not including Time

rho.x a list of length M of lists of length M where rho.x[[p]][[q]] = cor(cbind(X[[p]], X[[q]]))
if p!= q or rho.x[[p]][[q]] = cor(X[[p]])) if p = q, where X[[p]] =Xord(pj), Xcont(pj), Xcomp(pj), Xpois(pj), Xnb(pj)

rho.xall a list of length M of lists of length M where rho.xall[[p]][[q]] = cor(cbind(X_all[[p]], X_all[[q]]))
if p!= q or rho.xall[[p]][[q]] = cor(X_all[[p]])) if p = q, not including Time

maxerr a list of length M containing a vector of length M with the maximum correlation errors
between outcomes, maxerr[[p]]][q] = abs(max(corr.x[[p]][[q]] - rho.x[[p]][[q]]))

Additional components vary based on the type of simulated variables:

If ordinal variables are produced: ord_sum_x a list where ord_sum_x[[j]] is a data.frame sum-
marizing Xord(pj) for all p = 1, ..., M

If continuous variables are produced: cont_sum_x a data.frame summarizing the simulated distri-
butions of the Xcont(pj) and Xcomp(pj),

target_sum_x a data.frame summarizing the target distributions of the Xcont(pj) and Xcomp(pj),

mix_sum_x a data.frame summarizing the simulated distributions of the Xmix(pj),

target_mix_x a data.frame summarizing the target distributions of the Xmix(pj)

If Poisson variables are produced: pois_sum_x a data.frame summarizing the simulated distribu-
tions of the Xpois(pj)

If Negative Binomial variables are produced: nb_sum_x a data.frame summarizing the simulated
distributions of the Xnb(pj)

If random effects are produced: cont_sum_u a data.frame summarizing the simulated distributions
of the Ucont(pj) and Ucomp(pj),

target_sum_u a data.frame summarizing the target distributions of the Ucont(pj) and Ucomp(pj),

sum_uall a data.frame summarizing the simulated distributions of U_all,

mix_sum_u a data.frame summarizing the simulated distributions of the Umix(pj),
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target_mix_u a data.frame summarizing the target distributions of the Umix(pj),

rho.u list of length M, each component a list of length M; rho.u[[p]][[q]] = cor(cbind(U[[p]], U[[q]]))
if p != q or rho.u[[p]][[q]] = cor(U[[p]])) if p = q

rho.uall list of length M, each component a list of length M; rho.uall[[p]][[q]] = cor(cbind(U_all[[p]], U_all[[q]]))
if p != q or rho.uall[[p]][[q]] = cor(U_all[[p]])) if p = q

maxerr_u list of length M containing a vector of length M with the maximum correlation errors for U
between outcomes maxerr_u[[p]]][q] = abs(max(corr.u[[p]][[q]] - rho.u[[p]][[q]]))

References

See references for SimRepeat.

See Also

nonnormsys, corrsys, corrsys2

Examples

M <- 3
B <- calc_theory("Beta", c(4, 1.5))
skews <- lapply(seq_len(M), function(x) B[3])
skurts <- lapply(seq_len(M), function(x) B[4])
fifths <- lapply(seq_len(M), function(x) B[5])
sixths <- lapply(seq_len(M), function(x) B[6])
Six <- lapply(seq_len(M), function(x) list(0.03))
corr.e <- matrix(c(1, 0.4, 0.4^2, 0.4, 1, 0.4, 0.4^2, 0.4, 1), M, M,
byrow = TRUE)

means <- lapply(seq_len(M), function(x) B[1])
vars <- lapply(seq_len(M), function(x) B[2]^2)
marginal <- list(0.3, 0.4, 0.5)
support <- lapply(seq_len(M), function(x) list(0:1))
corr.x <- list(list(matrix(1, 1, 1), matrix(0.4, 1, 1), matrix(0.4, 1, 1)),

list(matrix(0.4, 1, 1), matrix(1, 1, 1), matrix(0.4, 1, 1)),
list(matrix(0.4, 1, 1), matrix(0.4, 1, 1), matrix(1, 1, 1)))

betas <- list(0.5)
betas.t <- 1
betas.tint <- list(0.25)
Sys1 <- corrsys(10000, M, Time = 1:M, "Polynomial", "non_mix", means, vars,

skews, skurts, fifths, sixths, Six, marginal = marginal, support = support,
corr.x = corr.x, corr.e = corr.e, betas = betas, betas.t = betas.t,
betas.tint = betas.tint, quiet = TRUE)

Sum1 <- summary_sys(Sys1$Y, Sys1$E, E_mix = NULL, Sys1$X, Sys1$X_all, M,
"Polynomial", means, vars, skews, skurts, fifths, sixths,
marginal = marginal, support = support, corr.x = corr.x, corr.e = corr.e)

## Not run:
seed <- 276
n <- 10000
M <- 3
Time <- 1:M



summary_sys 71

# Error terms have a beta(4, 1.5) distribution with an AR(1, p = 0.4)
# correlation structure
B <- calc_theory("Beta", c(4, 1.5))
skews <- lapply(seq_len(M), function(x) B[3])
skurts <- lapply(seq_len(M), function(x) B[4])
fifths <- lapply(seq_len(M), function(x) B[5])
sixths <- lapply(seq_len(M), function(x) B[6])
Six <- lapply(seq_len(M), function(x) list(0.03))
error_type <- "non_mix"
corr.e <- matrix(c(1, 0.4, 0.4^2, 0.4, 1, 0.4, 0.4^2, 0.4, 1), M, M,

byrow = TRUE)

# 1 continuous mixture of Normal(-2, 1) and Normal(2, 1) for each Y
mix_pis <- lapply(seq_len(M), function(x) list(c(0.4, 0.6)))
mix_mus <- lapply(seq_len(M), function(x) list(c(-2, 2)))
mix_sigmas <- lapply(seq_len(M), function(x) list(c(1, 1)))
mix_skews <- lapply(seq_len(M), function(x) list(c(0, 0)))
mix_skurts <- lapply(seq_len(M), function(x) list(c(0, 0)))
mix_fifths <- lapply(seq_len(M), function(x) list(c(0, 0)))
mix_sixths <- lapply(seq_len(M), function(x) list(c(0, 0)))
mix_Six <- list()
Nstcum <- calc_mixmoments(mix_pis[[1]][[1]], mix_mus[[1]][[1]],

mix_sigmas[[1]][[1]], mix_skews[[1]][[1]], mix_skurts[[1]][[1]],
mix_fifths[[1]][[1]], mix_sixths[[1]][[1]])

means <- lapply(seq_len(M), function(x) c(Nstcum[1], B[1]))
vars <- lapply(seq_len(M), function(x) c(Nstcum[2]^2, B[2]^2))

# 1 binary variable for each Y
marginal <- lapply(seq_len(M), function(x) list(0.4))
support <- list(NULL, list(c(0, 1)), NULL)

# 1 Poisson variable for each Y
lam <- list(1, 5, 10)
# Y2 and Y3 are zero-inflated Poisson variables
p_zip <- list(NULL, 0.05, 0.1)

# 1 NB variable for each Y
size <- list(10, 15, 20)
prob <- list(0.3, 0.4, 0.5)
# either prob or mu is required (not both)
mu <- mapply(function(x, y) x * (1 - y)/y, size, prob, SIMPLIFY = FALSE)
# Y2 and Y3 are zero-inflated NB variables
p_zinb <- list(NULL, 0.05, 0.1)

# The 2nd (the normal mixture) variable is the same across Y
same.var <- 2

# Create the correlation matrix in terms of the components of the normal
# mixture
K <- 5
corr.x <- list()
corr.x[[1]] <- list(matrix(0.1, K, K), matrix(0.2, K, K), matrix(0.3, K, K))
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diag(corr.x[[1]][[1]]) <- 1
# set correlation between components to 0
corr.x[[1]][[1]][2:3, 2:3] <- diag(2)
# set correlations with the same variable equal across outcomes
corr.x[[1]][[2]][, same.var] <- corr.x[[1]][[3]][, same.var] <-

corr.x[[1]][[1]][, same.var]
corr.x[[2]] <- list(t(corr.x[[1]][[2]]), matrix(0.35, K, K),

matrix(0.4, K, K))
diag(corr.x[[2]][[2]]) <- 1
corr.x[[2]][[2]][2:3, 2:3] <- diag(2)

corr.x[[2]][[2]][, same.var] <- corr.x[[2]][[3]][, same.var] <-
t(corr.x[[1]][[2]][same.var, ])

corr.x[[2]][[3]][same.var, ] <- corr.x[[1]][[3]][same.var, ]
corr.x[[2]][[2]][same.var, ] <- t(corr.x[[2]][[2]][, same.var])
corr.x[[3]] <- list(t(corr.x[[1]][[3]]), t(corr.x[[2]][[3]]),

matrix(0.5, K, K))
diag(corr.x[[3]][[3]]) <- 1
corr.x[[3]][[3]][2:3, 2:3] <- diag(2)
corr.x[[3]][[3]][, same.var] <- t(corr.x[[1]][[3]][same.var, ])
corr.x[[3]][[3]][same.var, ] <- t(corr.x[[3]][[3]][, same.var])

# The 2nd and 3rd variables of each Y are subject-level variables
subj.var <- matrix(c(1, 2, 1, 3, 2, 2, 2, 3, 3, 2, 3, 3), 6, 2, byrow = TRUE)
int.var <- tint.var <- NULL
betas.0 <- 0
betas <- list(seq(0.5, 0.5 + (K - 2) * 0.25, 0.25))
betas.subj <- list(seq(0.5, 0.5 + (K - 2) * 0.1, 0.1))
betas.int <- list()
betas.t <- 1
betas.tint <- list(c(0.25, 0.5))

method <- "Polynomial"

# Check parameter inputs
checkpar(M, method, error_type, means, vars, skews, skurts, fifths, sixths,

Six, mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts, mix_fifths,
mix_sixths, mix_Six, marginal, support, lam, p_zip, pois_eps = list(),
size, prob, mu, p_zinb, nb_eps = list(), corr.x, corr.yx = list(),
corr.e, same.var, subj.var, int.var, tint.var, betas.0, betas,
betas.subj, betas.int, betas.t, betas.tint)

# Simulated system using correlation method 1
N <- corrsys(n, M, Time, method, error_type, means, vars, skews, skurts,

fifths, sixths, Six, mix_pis, mix_mus, mix_sigmas, mix_skews, mix_skurts,
mix_fifths, mix_sixths, mix_Six, marginal, support, lam, p_zip, size,
prob, mu, p_zinb, corr.x, corr.e, same.var, subj.var, int.var, tint.var,
betas.0, betas, betas.subj, betas.int, betas.t, betas.tint, seed = seed,
use.nearPD = FALSE)

# Summarize the results
S <- summary_sys(N$Y, N$E, E_mix = NULL, N$X, N$X_all, M, method, means,

vars, skews, skurts, fifths, sixths, mix_pis, mix_mus, mix_sigmas,
mix_skews, mix_skurts, mix_fifths, mix_sixths, marginal, support, lam,
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p_zip, size, prob, mu, p_zinb, corr.x, corr.e)
S$sum_xall
S$maxerr

## End(Not run)
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