suddengains: Identify Sudden Gains in Longitudinal Data

Identify sudden gains based on the three criteria outlined by Tang and DeRubeis (1999) <doi:10.1037/0022-006X.67.6.894> to a selection of repeated measures. Sudden losses, defined as the opposite of sudden gains can also be identified. Two different datasets can be created, one including all sudden gains/losses and one including one selected sudden gain/loss for each case. It can extract scores around sudden gains/losses. It can plot the average change around sudden gains/losses and trajectories of individual cases.

Version: 0.2.1
Depends: R (≥ 3.4.0)
Imports: dplyr (≥ 0.8.0), tibble (≥ 2.1.1), magrittr (≥ 1.5), rlang (≥ 0.3.4), stringr (≥ 1.4.0), ggplot2 (≥ 3.1.1), psych (≥ 1.8.12), readr (≥ 1.3.1), tidyr (≥ 0.8.2), ggrepel (≥ 0.8.0)
Suggests: haven (≥ 2.1.0), writexl (≥ 1.1.0), knitr (≥ 1.21), DT (≥ 0.5), rmarkdown (≥ 1.11), spelling (≥ 2.1)
Published: 2019-05-21
Author: Milan Wiedemann ORCID iD [aut, cre], Graham M Thew ORCID iD [ctb], Richard Stott ORCID iD [ctb], Anke Ehlers ORCID iD [ctb, ths]
Maintainer: Milan Wiedemann <milan.wiedemann at>
License: GPL-3
NeedsCompilation: no
Language: en-US
Citation: suddengains citation info
Materials: README NEWS
CRAN checks: suddengains results


Reference manual: suddengains.pdf
Vignettes: A tutorial on using the suddengains R package
Package source: suddengains_0.2.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
OS X binaries: r-release: suddengains_0.2.1.tgz, r-oldrel: suddengains_0.2.1.tgz
Old sources: suddengains archive


Please use the canonical form to link to this page.